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Robust Statistical methods (such as LMedS and LTS) were first introduced in computer 

vision to improve the performance of feature extraction algorithms. One attractive feature 

of traditional robust statistical methods is that they can tolerate up to half of the data points 

that do not obey the assumed model (i.e., they can be robust to up to 50% contamination). 

However, they can break down at unexpectedly lower percentages when the outliers are 

clustered; also, they cannot tolerate more than 50% outliers. This is because that these 

methods measure only one single statistic: for example, the least median of residuals (for 

LMedS) or the least sum of trimmed squared of residuals (for LTS), omitting other 

characteristics of the data. We realised that there are two possible ways to improve the 

robustness of the methods: (i) to take advantage of special information in the data (e.g., 

symmetry); (ii) to take advantage of information in the residuals (i.e., the probability 

density function (pdf) of the residuals). In terms of these aspects, the thesis makes the 

following contributions: 

•  To leverage possible symmetry in the data, we adapt the concept of “Symmetry 

Distance” to formulate an improved regression method, called the Least Trimmed 

Symmetry Distance (LTSD). 

•  To exploit the structure in the pdf of residuals, we develop a family of very robust 

estimators: Maximum Density Power Estimator (MDPE), Quick-MDPE (QMDPE), 

and variable-bandwidth QMDPE (vbQMDPE) by applying nonparametric density 

estimation and density gradient estimation techniques in parametric estimation. In 

these methods, we consider the density distribution of data points in residual space 

and the size of the residual corresponding to the local maximum of the density 

distribution in their objective functions. An important tool in our methods is the 

mean shift method.   

 

Contents
Summary 



 xii 

•  The pdf of the residuals is important for scale estimation (more specifically, the 

“shape/spread”). By considering distribution of the residuals, and by employing 

the mean shift method and our proposed mean shift valley method, we develop the 

Two Step Scale Estimator (TSSE). Furthermore, based on TSSE, we propose a 

family of novel robust estimators: Adaptive Scale Sample Consensus (ASSC) and 

Adaptive Scale Residual Consensus (ASRC), which consider both the residuals of 

inliers and the scale of inliers in the objective functions. 

More specifically, the first contribution of this thesis is that we demonstrate the fragility of 

LMedS and LTS and analyse the reasons that cause the fragility of these methods in the 

situation when a large percentage of clustered outliers exist in the data. We introduce the 

concept of Symmetry Distance to model fitting and formulate an improved regression 

method — the LTSD estimator. Experimental results are presented to show that the LTSD 

performs better than LMedS and LTS under a large percentage of clustered outliers and 

large standard variance of inliers. 

The traditional robust methods generally assume that the data of interests (inliers) occupy a 

majority of the whole data.  In image analysis, however, the data is often complex and 

several instances of a model are simultaneously present, each accounting for a relatively 

small percentage of the data points. To deal with data including multiple structures and a 

high percentage of outliers (>50%) remains a challenging task. In this thesis, we assume 

that the inliers occupy a relative majority of the data, by which it is possible that a robust 

estimator can tolerate more than 50% outliers. A significant contribution of this thesis is 

that we present a series of novel and highly robust estimators—MDPE, QMDPE and 

vbQMDPE, which can tolerate more than 80% outliers and is very robust to data with 

multiple structures, by applying the mean shift algorithm in the space of the pdf of 

residuals. 

When data include multiple structures, two major steps should be taken in the process of 

robust model fitting: i) robustly estimate the parameters of a model, and ii) differentiate 

inliers from outliers. Experiments in this thesis show that to correctly estimate the 

parameters of a model (only) is not enough; to differentiate inliers from outliers, both the 

estimated parameters of a model and the corresponding scale estimate should be correct. 
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Having a correct scale of inliers is crucial to the robust behaviour of an estimator. The 

success of many robust estimators is based on having a correct initial scale estimate or the 

correct setting of a particular parameter that is related to scale (e.g., RANSAC, Hough 

Transform, M-estimators etc.). Although there are a lot of papers that propose highly 

robust estimators, robust scale estimation is relatively neglected in the computer vision 

community. One major contribution of this thesis is that we investigate the behaviour of 

several state-of-the-art robust scale estimators for data with multiple structures, and 

propose a novel robust scale estimator: TSSE. TSSE is very robust to outliers and can 

resist heavily contaminated data with multiple structures. TSSE is a very general method 

and can be used to give an initial scale estimate for robust estimators such as M-estimators. 

TSSE can also be used to provide an auxiliary estimate of scale (after the parameters of a 

model to fit have been found) as a component of almost any robust fitting method such as 

Hough Transform, MDPE, etc.  

Another important contribution of this thesis is that we propose, based on TSSE and 

RANSAC, another novel and highly robust estimator: ASSC (and a variant of ASSC: 

ASRC). The ASSC estimator is an important improvement over RANSAC because no 

priori knowledge concerning the scale of inliers is necessary (the scale estimation is data 

driven). ASSC can tolerate more than 80% outliers and multiple structures. ASSC is also 

an improvement over MDPE and its family (QMDPE/vbQMDPE). MDPE and its family 

only estimate the parameters of a model. In contrast, ASSC can produce the parameters of 

a model and the corresponding scale as its results.  

We used the mean shift algorithm extensively in the robust methods described above. We 

also directly apply the mean shift method to image segmentation based on image intensity 

or on image color. One property of the mean shift is that it is sensitive to local peaks 

(including false peaks). We found in our experiments that it is possible that there are many 

false peaks if the feature space (such as the intensity/color space or the residual space) is 

quantized. The occurrence of false peaks may have a negative influence on the 

performance of methods employing the mean shift. In this thesis, we establish a 

quantitative relationship between the appearance of false peaks and the value of the 

bandwidth h. We provide a complete unsupervised peak-valley sliding algorithm for gray-

level image segmentation. The general mean shift algorithm considers only the global 
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information (features) of the image, while neglecting the local homogeneity information. 

We modify the mean shift algorithm so that both local homogeneity and global information 

are considered. 

In order to validate our proposed methods, we have (successfully) applied these methods to 

a considerable number of important and fundamental computer vision tasks including: 

•  Model fitting (geometric primitive fitting): (a) line fitting; (b) circle fitting; (c) 

ellipse fitting; (d) plane fitting, etc.;  

•  Range image segmentation; 

•  Robust optical flow calculation; 

•  Fundamental matrix estimation;  

•  Grey image segmentation and color image segmentation. 
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1. Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

1.1 Background and Motivation 

The study of computer vision is strongly interdisciplinary. This study is new, rapidly 

growing and complex since it brings together several disciplines including Computer 

Science, Artificial Intelligence, Physics, Graphics, Psychology, Physiology, etc. The 

purpose of computer vision is to develop theories and algorithms to automatically extract 

and analyse useful information from an observed image, image set, or image sequence.  

One major task of computer vision and image analysis involves the extraction of 

“meaningful” information from images or image sequences using concepts akin to 

regression and model fitting. The range of applications is wide: it includes: robot vision, 

automated surveillance (civil and military) and inspection, biomedical image analysis, 

video coding, motion segmentation, human-machine interface, visualization, historical film 

restoration etc. 

Parametric models play a vital role in many activities in computer vision research. When 

engaged in parametric fitting in a computer vision context, it is important to recognise that 

1.1.1.  Chapter 1 

Introduction 
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data obtained from the image or image sequences may be inaccurate. It is almost 

unavoidable that data are contaminated (due to faulty feature extraction, sensor noise, 

segmentation errors, etc) and it is also likely that the data will include multiple structures.  

Thus, it has been widely acknowledged that all algorithms in computer vision should be 

robust for accurate estimation (Haralick 1986). This rules out a simple-minded application 

of the least squares (LS) method. To fit a model to noisy data (with a large number of 

outliers and multiple structures) is still a major and challenging task within the computer 

vision communities.  

Robust regression methods are a class of techniques that can tolerate gross errors (outliers) 

and have a high breakdown point. Robust Statistical methods were first introduced in 

computer vision to improve the performance of feature extraction algorithms. These 

methods can tolerate (in various degrees) the presence of data points that do not obey the 

assumed model. Such points are called “outliers.”  

 

 

 

 

 

 

 

 

 

Figure  1.1: The OLS estimator may breakdown when even one outlier exists in the data. 

The definition of robustness in this context often is focused on the notion of the breakdown 

point. The breakdown point of an estimator may be roughly defined as the smallest 

percentage of outlier contamination that can cause the estimator to produce arbitrarily large 

values ((Rousseeuw and Leroy 1987), pp.9). Breakdown point is one important quality of 
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an estimator when we evaluate how robust an estimator is to outliers. The more robust an 

estimator is, the higher its breakdown point is. The breakdown point, as defined in 

statistics, is a worst-case measure. A zero breakdown point only means that there exists 

one (at least) potential configuration for which the estimator will fail. The LS estimator has 

a breakdown point of 0%, because only one single extreme outlier is sufficient to force the 

LS estimator to produce arbitrarily large values (see Figure  1.1).  

 

 

 

 

 

(a) (b)       

Figure  1.2: Examples that many instances of a model can be simultaneously present in one 

image: (a) there are many planar surfaces (i.e., instances of a planar model) in the range 

image, (b) there are many cups (the rim of a cup can be roughly treated as a circle model) 

in the color image.  

Two frequently used robust techniques are the least median of squares (LMedS) 

(Rousseeuw 1984) and the M-estimators (Huber 1981). One attractive feature of LMedS 

and M-estimators is that they can tolerate up to half of the data points being arbitrarily bad. 

In computer vision and image analysis, however, the data is often complex and several 

instances of a model are simultaneously present, each accounting for a relatively small 

percentage of the data points (see Figure  1.2). We call this case “data with multiple 

structures”. Thus it will rarely happen that a given population achieves the critical size of 

50% of the total population and, therefore, techniques that have been touted for their high 

breakdown point (e.g., LMedS and other traditional robust methods from statistics) are no 
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longer reliable candidates, being limited to a 50% breakdown point. Only robust methods 

designed with this special nature of the visual data in mind can achieve satisfactory results. 

To design an efficient robust method for computer vision tasks, several characteristics that 

are distinct from those (mostly) addressed by the statistical community must be taken into 

account: 

•  Pseudo-outliers.  In a given image, there are usually several populations of data 

(i.e., multiple structures). Some parts correspond to one object in a scene and other 

parts will correspond to other, rather unrelated, objects. When attempting to fit a 

model to this data, one must consider the population belonging to the related object 

as inliers and other populations as outliers - the term pseudo-outlier has been 

coined (Stewart 1995). In computer vision tasks, it rarely happens that a given 

population achieves the critical size of 50% of the total population and, therefore, 

techniques that have been touted for their high breakdown point (e.g., the Least 

Median of Squares) are no longer reliable candidates from this point of view.  

•  Large data sizes. Modern digital cameras exist with around 4 million pixels per 

image. Image sequences, typically at up to 50 frames per second, contain many 

images. Thus, computer vision researchers typically work with data sets in the tens 

of thousands of elements, at least, and data sets in the 106 and 109
 range are not 

uncommon. 

•  Unknown sizes of populations and unknown location. Computer vision requires 

fully automated analysis in, generally, rather unstructured environments. Thus, the 

sizes and locations of the populations involved, will fluctuate greatly. Moreover, 

there is no “human in the loop” to select regions of the image dominated by a single 

population, or to adjust various thresholds. In contrast, statistical problems studied 

in most other areas usually have a single dominant population plus some percentage 

of outliers (typically mis-recordings - not the pseudo-outliers mentioned above). 

Typically a human expert is there to assess the results (and, if necessary, crop the 

data, adjust thresholds, try another technique etc.).  
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•  Emphasis on fast calculation. Most tasks in computer vision must be performed 

“on-the-fly”. Offline analysis that takes seconds, let alone minutes or hours, is 

usually a luxury afforded by relatively few applications. 

These rather peculiar circumstances have lead computer vision researchers to develop their 

own techniques that perform in a robust fashion (perhaps “empirically robust” should be 

used, as few have formal proved robust properties, though many trace their heritage to 

techniques that do have such proved properties). These include ALKS (Lee, Meer et al. 

1998), RESC (Yu, Bui et al. 1994), and MUSE (Miller and Stewart 1996). However, it has 

to be admitted that a complete solution, addressing all of the above problems, is far from 

being achieved. Indeed, none of the techniques, with present hardware limitations, are 

really “real-time” when applied to the most demanding tasks. None have been proved to 

reliably tolerate high percentages of outliers and, indeed, we have found with our 

experiments that RESC and ALKS, although clearly better than the Least Median of 

Squares, in this respect, are not always reliable. As we stated in the summary of this thesis, 

one can improve upon these approaches by using extra information such as symmetry in 

the data or the residual distribution. 

This thesis addresses various problems in computer vision - specifically, robust model 

fitting, range image segmentation, image motion estimation, fundamental matrix 

calculation, and grey/color image segmentation. The major contributions of this thesis 

come in following forms: (a) a new symmetry-based robust method; (b) several novel 

highly robust methods with experimentally demonstrated advantages; (c) a novel highly 

robust scale estimation technique; (d) several practical techniques applying the proposed 

robust methods to solve “real” computer vision problems including range image 

segmentation, optical flow calculation and fundamental matrix estimation; and (e) a couple 

of algorithms for grey/color image segmentation. A more subtle contribution of this thesis 

is that we, in looking at applying mean shift for histogram-based image segmentation, 

noticed a quantizing effect that produces false peaks. We develop a theory to predict/avoid 

false peaks and this theory is applicable in all situations where one quantizes feature space 

(e.g., the residual space) before applying the mean shift. The methods/techniques 

developed in this thesis can be beneficial to both the statistics and the computer vision 

communities.  
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1.2 Thesis Outline 

There are a wide range of topics covered in this thesis (model fitting; range image 

segmentation; optical flow calculation; fundamental matrix estimation; grey/color image 

segmentation). Thus, previous related work is reviewed or introduced when it is necessary. 

In Chapter  2, several state-of-the-art robust techniques are reviewed. These robust 

techniques include both those developed in the statistics field (such as M-Estimators, 

Repeated Median, LMedS, and LTS) and those developed in the computer vision 

community (such as Hough Transform, RANSAC, MINPRAN, MUSE, ALKS, and 

RESC).  Chapter  3 addresses the fragility of traditionally employed robust methods 

(LMedS and LTS) when data involve clustered outliers, and analyses the reasons that cause 

the fragility of these methods. Furthermore, the symmetry information in the data is 

exploited and the concept of “Symmetry Distance” is introduced to model fitting. An 

improved regression method — the LTSD is proposed. Chapter  4 takes advantage of 

structure information in the pdf of the residuals in order to achieve higher robustness. By 

employing nonparametric density estimation and density gradient techniques, and by 

considering the distribution of probability density in the residual space, a novel and highly 

robust estimator, MDPE, is proposed. Extensive experimental comparisons have been 

carried out to show the advantages of MDPE compared with five frequently used robust 

methods (LMedS, Hough Transform, RANSAC, ALKS, and RESC). Chapter  5 begins by 

reviewing several state-of-the-art range image segmentation algorithms. Then a novel 

model-based range image segmentation algorithm, derived from Quick-MDPE, is 

proposed. Segmentation is a complicated task and it requires more than a simple 

application of a robust estimator. Actually, our proposed algorithm tackles many subtle 

issues and thereby provides a framework for those who want apply their robust estimators 

to the task of range image segmentation. In Chapter  6, we introduce the problem of 

optical flow calculation. Then, a modified QMDPE employing the variable bandwidth 

technique (vbQMDPE) is applied to compute the optical flow. Because vbQMDPE has a 

higher robustness to outliers than LMedS and LTS, the experiments on both synthetic and 

real image sequences show very promising results.   
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Having a correct scale of inliers is important to the robust behaviour of a lot of estimators. 

However, robust scale estimation is relatively neglected. Thus, Chapter  7 investigates the 

behaviour of several state-of-the-art robust scale estimators for data with multiple 

structures, and, by exploiting the information of shape distribution of residuals, proposes a 

novel robust scale estimator: TSSE. Chapter  8 proposes, based on TSSE, a novel robust 

estimator: ASSC and its variant ASRC. Experiments on model fitting, range image 

segmentation and fundamental matrix estimation show that the proposed method is very 

robust to data with discontinuities, multiple structures and outliers. In Chapter  9, we 

directly apply the mean shift algorithm to grey/color image segmentation. In the process, 

we identify an issue that affects the mean shift method when the data is heavily quantized. 

We also solve a couple of practical problems: (i) we propose a quantitative relationship 

between the appearance of false peaks and the value of the bandwidth h, which is 

applicable for many methods employing the mean shift; (ii) we introduce the local 

homogeneity into the mean shift algorithm. These result in two algorithms for grey/color 

image segmentation. Finally, Chapter  10 summarizes what we have done and identifies 

what remain to be challenging problems: suggesting future research work.   
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2. Model-Based Robust Methods: A Review  
 

 

 

 

 

 

 

 

 

 

 

 

The history of seeking a robust method that can resist the effects of gross errors, i.e. 

outliers, in fitting models is long. Since data contamination is usually unavoidable - (due to 

such cases as faulty feature extraction, sensor noise and failure, segmentation errors, 

multiple structures, etc.), there has recently been a general recognition that all algorithms 

should be robust for accurate estimation. As pointed out by (Meer, Mintz et al. 1991), a 

robust estimator should have followed properties: 

•  Good efficiency at the assumed noise distribution.  

•  Reliability in the presence of various types of noise. 

•  High breakdown point. 

•  Time complexity is not much greater than that of the Least Squares method. 

Because linear models play a very important role in most modern robust methods and 

many modern techniques are developed based on linear regression methods, this chapter 

commences with reviewing a most frequently applied linear regression method: the LS 

method. Several state-of-the-art robust techniques are then reviewed. 

 Chapter 2 

Model-Based Robust Methods: 
A Review 
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2.1 The Least Squares (LS) Method 

Linear regression analysis is an important tool in most applied science including computer 

vision. The least squares method is one of the most famous linear regression methods and 

it has been used in many scientific fields for a long time.  

The classical linear model can be described in the following form [(Rousseeuw and Leroy 

1987), pp.1]:  

   ),...,1(...11 niexxy ipipii =+++= θθ                  ( 2.1) 

where the variable yi is the response variable; and the variables xi1,…,xip are the 

explanatory variables. The error term ei is usually assumed to be normally distributed with 

mean zero and standard deviation σ.  

We have n sets of observations on yi and (xi1,…,xip), for i=1,…n: 
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where Y=( y1,…,yn )’ is a n-vector; X=( x(1),…, x(p) ) is a n-by-p matrix and x(i) = (xi1,…,xin)’ 

is a n-vector. 

Equation ( 2.1) can be rewritten using matrix notation as follows: 

                          Y=Xθ  + e                        ( 2.3)       

Using regression analysis, we can obtain regression coefficients )'ˆˆ(ˆ
1 pθθθ ⋅⋅⋅=  from the 

observation data (Y, X).  θ̂  is the estimate of θ . Applying θ̂  to the explanatory variables 

(xi1,…,xip), we can obtain: 
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           pipii xxy θθ ˆ...ˆˆ 11 ++=               ( 2.4) 

where iŷ is the estimated value of yi. Usually, this estimated value is not exactly the same 

as the actually observed value. The difference between the estimated value iŷ  and actually 

observed value yi is the residual ri for the i'th set of observed data. 

ri =  yi - iŷ              ( 2.5) 

The ordinary least squares regression estimator can be written as follows: 

∑
=

=
n

i
ir

1

2

ˆ
minargˆ
θ

θ             ( 2.6) 

Equation ( 2.6) is the well-known LS equation. From equation ( 2.6), we can see the least 

squares estimator estimates the optimized θ̂  by minimizing of the sum of the squared 

residuals.  

If we let:  

                                                    S(θ̂ ) =∑
=

n

i
ir

1

2                                                        ( 2.7) 

Then, we have: 

   S(θ̂ )= r’r = (Y-Xθ̂ )’(Y-Xθ̂ ) = Y’Y+θ̂ ’X’X θ̂ -2θ̂ ’X’Y                  ( 2.8) 

Differentiating S(θ̂ ) w.r.t. θ̂ , we obtain: 

           2X’Xθ̂ -2X’Y = 
ˆ( ) 0ˆ

S θ
θ

∂ =
∂

                          ( 2.9) 

From equation ( 2.9), we obtain the normal equation [(Rao and Toutenburg 1999), pp.24]: 

    X’Xθ̂  = X’Y                      ( 2.10) 

When X’X is not singular, the regression coefficients θ̂  can be estimated by: 
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    θ̂  = (X’X)-1X’Y                       ( 2.11) 

The LS estimator is highly efficient and achieves optimum results under Gaussian 

distributed noise. Although the LS method has the advantages of low computational cost 

and high efficiency, it is extremely sensitive to outliers (gross errors or samples belonging 

to another structure and distribution).  

2.2 Outliers and Breakdown Point 

 

 

 

 

 

 

 

 

Figure  2.1: The types of outliers. 

Outliers can be grossly defined as: “the data points that lie far from the majority of the 

data”.  Before we discuss the behavior of robust estimators, it is beneficial to investigate 

the various types of outliers that one can encounter. Outliers frequently happen in the data 

in computer vision tasks. Outliers could potentially lead to negative effects on the accuracy 

of the results. Even more, outliers could seriously spoil the results of one method that is not 

robust to outliers. Although a lot of new statistical techniques have been developed to 

tolerate the effect of outliers within recent years, their advantages remain only when the 

data involve certain types of outliers.  
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Loosely speaking, outliers can be classified into following four types: 

•  Leverage points — the outliers in explanatory variables. 

•  Clustered outliers — the outliers that are clustered. 

•  Randomly distributed outliers — the outliers that are randomly distributed. 

•  Pseudo outliers — the data points from structures that are extraneous to a particular 

single parametric model fit, i.e., data that are inliers to one structure will be pseudo 

outliers to another.  

“Leverage point” means that the point is outlying relative to the explanatory variable xi, but 

not relative to the response variable yi. Leverage points do not always lead to negative 

results. When a leverage point lies close to a regression line, it is a “good leverage point” 

(as shown in Figure  2.1) and can lead to a good effect on the results. However, the leverage 

point is far away the regression line, it is a “bad leverage point” (i.e., outlier). Clustered 

outliers often bring seriously negative effects to the results. It has been experimentally 

shown that it is relatively hard to resist the effects of clustered outliers than those of 

randomly distributed outliers (see chapter 3 and 4). Most theories are proposed assuming 

that outliers are uniformly distributed. The theories that consider clustered outliers are 

relatively less in number.  

One characteristic to distinguish pseudo outliers from gross outliers and clustered outliers 

is that pseudo outliers are coherent and structured. Pseudo outliers have structures while 

gross outliers and clustered outliers do not have. Pseudo outliers often appear in the data 

including multiple structures. Because multiple structures frequently happen in computer 

vision tasks, studying the effects of pseudo outliers (multiple structures) has been popular 

in computer vision community (Yu, Bui et al. 1994; Miller and Stewart 1996; Lee, Meer et 

al. 1998; Bab-Hadiashar and Suter 1999).   

To seek an estimator with high breakdown point is one of the most important topics among 

the statistics and computer vision community. The breakdown point of an estimator may be 

roughly defined as the smallest percentage of outlier contamination that can cause the 

estimator to produce arbitrarily large values. Let Z be any sample of n data points (x1, y1), 
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…, (xn, yn), Z = {z1, …,zn} and zi = {xi, yi}. For m ≤ n, the finite-sample breakdown point of 

a regression estimator T can be written as [(Rousseeuw and Leroy 1987), pp.10]:  
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Because one single outlier is sufficient to force the LS estimator to produce arbitrarily 

large value, the LS estimator has a breakdown point of 0%.  

In order to reduce the influence of outliers, many robust estimators with high breakdown 

point have been developed during the past three decades. In the next sections, several 

modern robust estimators, developed by both statistics and computer vision communities 

will be reviewed. 

2.3 Traditional Robust Estimators from Statistics 

A lot of robust estimators have been developed within the statistics community and applied 

to computer vision field. Among these robust estimators, the family of M-estimators is one 

class of the most popular robust regression methods. 

2.3.1 M-Estimators and GM-Estimators 

The theory of M-estimators was firstly developed by Huber in 1964 and several years later. 

It was successfully generalized as a robust regression method (Huber 1973; Huber 1981). 

The essence of M-estimators is to replace the squared residuals 2
ir  in equation ( 2.6) by a 

symmetric function ρ of the residuals: 

ˆ 1

ˆ arg min ( )
n

i
i

r
θ

θ ρ
=

= ∑              ( 2.13) 

where )( irρ  is a robust loss function with a unique minimum when residual r is zero. The 

purpose of introducing the loss function )( irρ  is to reduce the effects of outliers. 
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Let the derivative of )( irρ  be )( irψ , then differentiating∑
=

n

i
ir

1
)(ρ in equation 2.13, we obtain 

0)ˆ/(
1

=∑
=

i

n

i
i rr σψ          ( 2.14) 

where σ̂ is the variance related to residuals. The solution of equation ( 2.14) could be 

found using iterative minimization and various equation solving algorithms (Li 1985). 

M-estimators can be classified into three types based on the influence function )( irψ  

(Holland and Welsch 1977; Stewart 1997): 

1. Monotone M-estimators. This type of M-estimators has nondecreasing, 

bounded )(rψ functions [(Huber 1981), Chapter 7]. The loss functions can be 

written as: 
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2. Hard Redescenders. This type of M-estimators forces )(rψ =0 when cr > (c is a 

threshold). That is to say, a residual will lose its effects on the results when the 

absolute of the residual is larger than c (Hampel, Rousseeuw et al. 1986a). The loss 

functions )(rρ can be written as: 
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3. Soft Redescenders. This type of M-estimators has not a finite rejection point c. The 

type of M-estimators force )(rψ =0 when ∞→r . 
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)/1log()1(
2
1)( 2 frfr ++=ρ       ( 2.17) 

Although the M-estimators are robust to outliers with respect to response variables, they 

are not efficient in resisting the outliers with respect to explanatory variables (see equation 

( 2.1)). Therefore, the generalized M-estimators (GM-estimators) were developed to reduce 

the effects of outliers with respect to explanatory variables. GM-estimators used weight 

function w to resist the influence of outliers with respect to explanatory variables.  

Mallows (Mallows 1975) presented the following GM-estimators: 

0)ˆ/()(
1

=∑
=

i

n

i
ii xrxw σψ             ( 2.18) 

Hill developed the following equation (Hill 1977): 

0)ˆ)(/()(
1

=∑
=

i

n

i
iii xxwrxw σψ              ( 2.19) 

Unfortunately, it has been proved that the breakdown point of GM-estimators is only 

1/(1+p), where p is the dimension of explanatory variables (Maronna, Bustos et al. 1979). 

That means when p=2, the highest breakdown point of GM-estimators is only 33.333%. 

When p increases, the breakdown point will correspondingly diminish. 

2.3.2 The Repeated Median (RM) Estimator 

Before the development of the repeated median estimator, it was controversial whether it 

was possible to find a robust estimator with a high breakdown point of 50%. In 1982, 

Siegel proposed the repeated median (RM) estimator (Siegel 1982). The repeated median 

estimator has an attractive characteristic in that it can obtain a 50% breakdown point.  

The repeated median method can be summarized as follows: For any p observations, (xi1, 

yi1),…,(xip, yip), let the solution parameter vector be denoted by '
1

ˆ ˆ ˆ( ,..., )pθ θ θ= .  The jth 

coordinate of this vector is denoted by θ j (i1,…,ip). Then the repeated median estimator is 

written as:  
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−

= θ j (i1,…,ip)))…)                                  ( 2.20) 

The repeated median estimator is effective for problems with small p. However, the time 

complexity of the repeated median estimator is O(nplogpn), which  prevents the method 

being useful in  applications where p  is even moderately large. 

2.3.3 The Least Median of Squares (LMedS) Estimator 

Rousseeuw proposed the least median of squares (LMedS) in 1984 (Rousseeuw 1984). The 

LMedS method has the following assumptions: 

•  The signal to be estimated should occupy the majority of the data points, that is, 

more than 50% data points should belong to the signal to be estimated (some 

traditional methods such as RM, LTS, etc., also have the same assumption). 

•  The correct fit will correspond to the one with the least median of squared 

residuals. This criterion is not always true when the data includes multiple 

structures and clustered outliers, and when the variance of inliers is large (see 

chapter 2 and 3). 

The LMedS method is based on the simple idea of replacing the sum in least sum of 

squares formulation by a median. LMedS finds the parameters to be estimated by 

minimizing the median of squared residuals corresponding to the data points. The LMedS 

estimate can be written as:  

  2

ˆ
minargˆ

ii
rmed

θ
θ =                                                      ( 2.21) 

A drawback of the LMedS method is that no explicit formula exists for the solution of 

equation ( 2.21) – the exact solution can only be determined by a search in the space of all 

possible estimates. This space is very large. One can consider all estimates determined by 

all possible p-tuples of data points. There are O(np) p-tuples and it takes O(nlogn) time to 

find the median of the residuals of the whole data for each p-tuple. Thus it costs 

O(np+1logn) for the LMedS method. The cost will thus increase very fast with n and p. 
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In practice, only an approximate LMedS, based upon random sampling, can be 

implemented for any problem of a reasonable size – we generally refer to this approximate 

version when we use the term LMedS (a convention adopted by most other authors as 

well). In order to reduce the time complexity of the LMedS method to a feasible value, a 

Monte Carlo type technique (described as follows) is usually employed.  

A p-tuple is “clean” if it consists of p good observations without contamination by outliers. 

One performs, m times, random selections of p-tuples, where one chooses m so that the 

probability (P) that at least one of the m p-tuples is “clean” is almost 1. Let ε be the 

fraction of outliers contained in the whole set of points. The probability P can be expressed 

as follows: 

       P=1-(1-(1- ε)p)m                          ( 2.22) 

Thus one can determine m for given values of ε, p and P by:  
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For example, if there are 50 percent of data contaminated by outliers, i.e. ε = 0.5, and if we 

require P = 0.99; then, for circle fitting, p=3, we obtain m=35; and for ellipses fitting, if we 

let p=5, then we obtain m=145. 

The LMedS method has excellent global robustness and high breakdown point (i.e., 50%). 

Over the last two decades, LMedS has been growing in popularity. For example, Kumar 

and Hanson used the least median of squares to solve the pose estimation problem (Kumar 

and Hanson 1989); Roth and Levine employed it for range image segmentation (Roth and 

Levine 1990); Meer et. al. applied it for image structure analysis in the piecewise 

polynomial field ; Zhang used the least median squares in conic fitting (Zhang 1997); and 

Bab-Hadiashar and Suter employed it for optic flow calculation (Bab-Hadiashar and Suter 

1998). 

However, the relative efficiency of the LMedS method is poor when Gaussian noise is 

present in the data. As Rousseeuw noted (Rousseeuw and Leroy 1987), the LMedS method 
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has a very low convergence rate: it is of order n-1/3, which is much lower than the 

convergence rate of order n-1/2 of M-estimators. To compensate this deficiency, Rousseeuw 

improved the LMedS method by carrying out a weighted least square procedure after the 

initial LMedS fit. The weights are chosen based on the initial LMedS fit. 

The preliminary scale (a detailed description sees chapter 7) estimate is given by: 

251.4826(1 ) ii
S med r

n p
= +

−
                                     ( 2.24) 

where  ri is the residual of i'th sample.  

The weight function Wi which will be assigned to the i'th data point is given by: 
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The data points corresponding to Wi=0 are likely to be outliers and will not be considered 

in the further weighted least squares estimate. The data points having Wi=1 are inliers and 

will be used for determining the final variance estimates σ̂ . 

Finally, σ̂ is given by the weighted least squares 
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There are different ways in which a method can be robust. The robustness we have been 

discussing is global robustness. However, the LMedS method may be locally unstable 

when fitting models to data. This means that a small change in the data can greatly alter the 

output. This behaviour is not desirable in computer vision and has been noticed by Thomas 

(Thomas and Simon 1992). In comparison, M-estimators have better local stability. 
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2.3.4 The Least Trimmed Squares (LTS) Estimator 

The least trimmed squares (LTS) method was introduced by Rousseeuw to improve the 

low efficiency of LMedS (Rousseeuw 1984; Rousseeuw and Leroy 1987). The LTS 

estimator can be mathematically expressed as: 
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where nnn rr :
2

:1
2 )()( ≤⋅⋅⋅≤  are the ordered squared residuals, h is the trimming constant. 

The LTS method uses h data points (out of n) to estimate the parameters. The coverage 

value, h, may be set from n/2 to n. The aim of LTS estimator is to find the h-subset with 

smallest least squares residuals and use the h-subset to estimate parameters of models. The 

breakdown point of LTS is (n-h)/n. When h is set n/2, the LTS estimator has a high 

breakdown value of 50%. 

The advantages of LTS over LMedS are: 

•  It is less sensitive to local effects than LMedS, i.e. it has more local stability. 

•  LTS has better statistical efficiency than LMedS. It converges like n –1/2. 

The implement of the LTS method also uses random sampling because the number of all 

possible h-subsets ( h
nC ) grows fast with n.  There are two commonly employed ways to 

generate a h-subset: 

1. Directly generate a random h-subset from the n data points. 

2. Firstly generate a random p-subset. If the rank of this p-subset is less than p, 

randomly add data points until the rank is equal to p. Next, use this subset to 

compute parameters jθ̂  (j=1,…p) and residuals ri (i=1,…,n). Sort the residuals into 

)(()(()1(( nrhrr πππ ≤⋅⋅⋅≤≤⋅⋅⋅≤ , and h-subset is set to:  H:={ )(),...,1( hππ }. 
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Although the first way is easier than the second, the h-subset yielded by the first method 

may contain a lot of outliers. Indeed, the chance of generating a “clean” h-subset by 

method (1) tends to zero with increasing n. In contrast, it is easier to find a “clean” p-

subset without outliers. Therefore, method (2) can generate more (good) initial subset with 

size h than method (1). 

Like LMedS, the efficiency of LTS can be improved by adopting a weighted least squares 

refinement as the last stage. 

2.4 Robust Estimators Developed within the Computer Vision 

Community 

Although many robust estimators were developed in statistics during the past decades, 

most of them can only tolerate 50% outliers. In computer vision tasks, it frequently 

happens that outliers and pseudo-outliers occupy the absolute majority of the data. 

Therefore, the requirement in these robust estimators that outliers occupy less than 50% of 

all the data points is far from being satisfied for real tasks in computer vision. A good 

robust estimator should be able to correctly find the fit when outliers occupy a higher 

percentage of the data (more than 50%). Also, ideally, the estimator should be able to resist 

the influence of all types of outliers (e.g., uniformly distributed outliers, clustered outliers 

and pseudo-outliers).  

Recently, many efforts have been made in computer community to find robust estimators, 

which can tolerate more than 50% outliers. Among these high robust estimators, the 

frequently used estimators are Hough Transform (Hough 1962), RANSAC (Fischler and 

Rolles 1981), MINPRAN (Stewart 1995), MUSE (Miller and Stewart 1996), ALKS (Lee, 

Meer et al. 1998), and RESC estimator (Yu, Bui et al. 1994). In the following sub-sections, 

we will introduce these robust estimators. We commence with the explanation of 

breakdown point as it is often interpreted by the computer vision community.  
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2.4.1 Breakdown Point in Computer Vision 

In the statistical literature (Huber 1981; Rousseeuw and Leroy 1987), there are a number of 

precise definitions of robustness and of robust properties: including the aforementioned  

“breakdown point” (see section  2.2)– which is an attempt to characterize the tolerance of 

an estimator to large percentages of outliers. Loosely put, such estimators should still 

perform reliably even if up to 50% of the data do not belong to the model we seek to fit (in 

statistics, these “outliers” are usually false recordings or other “wrong” data).  

Estimators, such as the Least Median of Squares, that have a proven breakdown point of 

0.5, have been much vaunted; particularly since this is generally viewed to be the best 

achievable. It would be desirable to place all estimators on such a firm theoretical footing 

by, amongst other things, defining and proving their “breakdown-point. However, in 

practice, it is usually not possible to do so. Moreover, one can question whether the current 

definitions of such notions are appropriate for the tasks at hand – in order to yield 

mathematical tractability, they may be too narrow/restrictive. For example, does one care if 

there is one single, unlikely if not impossible, configuration of data that will lead to the 

breakdown of an estimator if all practical examples of data can be reliably tackled? 

Moreover, as appealing as it is to quote theoretical results, it may mean little in practice. 

Taking for example the Least Median of Squares estimator: the estimator is too costly to 

implement and so everyone implements an approximate version of that estimator – no such 

proofs exist (nor can they) assuring a precise breakdown point for such approximate 

versions of the estimators. Not to mention the fact that there are data sets, having less than 

50% outliers, where even the true Least Median of Squares will provably fail (for example 

clustered outliers—see section  3.2); of course such configurations are carefully excluded 

by the careful phrasing of the formal proofs of robustness. Yet clustered outliers, perhaps 

unlikely in the mainstream statistical examples, are somewhat likely in computer vision 

tasks when we consider the notion of pseudo-outliers (Stewart 1997) – data belonging to a 

second “object” or “objects” within the image. 

Several techniques (e.g., RANSAC, Hough transform) have experimentally proven 

themselves as reliable workhorses (tolerating very high percentages of outliers – usually 

much over 50%). We may say that these have an empirically determined very high 
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breakdown point, meaning that these are “unlikely” to breakdown and can usually tolerate 

extremely high levels of outliers (much in excess of 50%).  

Although the breakdown point in statistics is proved to be bounded by 0.5 [(Rousseeuw 

and Leroy 1987), pp.125], the proof also shows that they require the robust estimator has a 

unique solution (more technically, they require affine equivariance). When outliers 

(including pseudo-outliers associated with multiple structures) occupy more than 50% of 

the whole data, a robust method may return one of the multiple valued solutions (Yu, Bui 

et al. 1994). 

As Stewart said (Stewart 1999): the nature of computer vision problem alters the 

performance requirements of the robust estimators in a number of ways. The optimum 

breakdown point of 0.5 must be surpassed in some domains. A robust estimator with more 

than 0.5 breakdown point is possible. That is, a robust estimator may have a higher than 

0.5 breakdown point if we relax the single solution requirement, and permit the case of 

multiple solutions to exist (Yu, Bui et al. 1994; Stewart 1995; Lee, Meer et al. 1998). This 

can be done through the use of RANSAC or Hough Transform, or through adaptive 

techniques based on scale estimates such as ALKS and MUSE, etc (Stewart 1999). Though 

none of them have a theoretically proven breakdown point higher than 0.5, plausible 

arguments, supported by experiments, suggest that they do in practice. 

Thus, in this thesis, though we are motivated by the appealing notion of strictly provable 

robustness in the form of high breakdown point, we follow a growing tradition of authors 

(Yu, Bui et al. 1994; Stewart 1995; Lee, Meer et al. 1998) that present estimators, that have 

empirically demonstrated robust qualities and are supported by plausible arguments, based 

(as is, we might emphasize, the approximate Least Median of Squares technique used by 

many statisticians and other scientists alike) on the similarity of the proposed technique to 

estimators that do have provably high breakdown points.       

2.4.2 Hough Transform (HT) Estimator 

The Hough Transform was developed first to detect simple curves such as lines and circles 

(Hough 1962). The basic Hough Transform is a voting technique. A typical 
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implementation of the technique is to count the number of data features that are mapped 

into each cell in quantized parameter space. The Hough Transform has attracted a great 

deal of attention, and many improvements have been made, like the generalized Hough 

Transform, the probabilistic Hough Transform and the hierarchical Hough Transform 

(Illingworth and Kittler 1988; Leavers 1993). 

The Hough transform has been recognized as being a powerful tool in shape analysis, 

model fitting, motion segmentation, which gives good results even in the presence of noise 

and occlusion. Major shortcomings of the Hough Transform are excessive storage 

requirements and computational complexity. Typically, the storage space and time 

complexity required is about O(Np), where p is the dimension of parameter space and N is 

the number that each parameter space is quantized into. Another problem of the Hough 

Transform is its limited precision. Generally speaking, increasing the quantization number 

of each parameter space will lead to a higher precision; however, this will also increase the 

computational cost. Finally, though the Hough Transform can be successfully applied to 

estimate multiple structures, one might have to solve many practical problems in multi-

modal parameter space. In effect, the hard problems have been deferred to the analysis of 

parameter space. Though the Hough Transform tends to demonstrate robustness in the 

presence of relatively high percentages of outliers, no formal proof of robustness (in terms 

of breakdown point) seems to exist until very recently: we become aware of the work of 

(Goldenshluger and Zeevi 2004), where the authors formalized the statistical properties of 

the HT methodology and determined the breakdown point of the HT estimator.   

2.4.3 Random Sample Consensus (RANSAC) Estimator 

Fischler and Bolles (Fischler and Rolles 1981) provided a generate-and-test paradigm: 

RANdom Sample Consensus (RANSAC). They used the minimum number of data points, 

a p-subset (p is the dimension of parameter space), necessary to estimate the parameters of 

the model. RANSAC, for its high robustness to outliers and ease to carry out, has been 

widely employed in many computer vision tasks. The algorithm of RANSAC can be 

described as follows:  
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1 Randomly choose a p-subset from the given n data points. This step has the similar 

place to that used in LMedS, LTS, ALKS, etc. in that all of these estimators employ 

a random sampling scheme.  

2 Using this p-subset to determine the parameters of the model. Then, determine the 

number of data points that are within some error tolerance of the model. 

3 If the number is greater than a threshold, use the p-subset to determine a new model 

by the least squares method and output the parameters of the model as results. 

4 Otherwise, randomly choose a new p-subset and repeat step 1 and 2. If no consensus 

with the threshold or more members has been found after running the 

predetermined number of trails, either terminate the program or compute the 

parameters of the model with the largest consensus set found. 

From the procedure of RANSAC described above, we can see the RANSAC method need 

three predetermined parameters: 

•  The error tolerance. 

•  The number of subsets to try. 

•  The threshold, which indicates whether or not the correct model has been 

found. 

If the predetermined parameters are correct, RANSAC is very robust to outliers and can 

tolerate more than 50% outliers experimentally. However, if the predetermined parameters 

or some of them (for example, the error tolerance) are wrong, the achievements of 

RANSAC will be corrupted.   

2.4.4 Minimize the Probability of Randomness (MINPRAN) Estimator  

The MINPRAN estimator is one kind of robust estimator that has a higher than 50% 

breakdown point (Stewart 1995).  It can find a model in the data involving more than 50% 
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outliers without prior knowledge about error bounds. In contrast, the Hough Transform and 

RANSAC techniques need a priori knowledge about the inlier bound of the correct fit. 

The MINPRAN estimator is similar to the LMedS/LTS estimator but it outperforms the 

LMedS/LTS estimator in the following ways:  

•  The MINPRAN estimator can find correct fit that involves less than 50% of the 

data. The prerequisite of this achievement is that inliers need to be close to the 

correct fit and outliers are randomly distributed. 

•  It does not “hallucinate” fits when there is not any model in the data. (The 

MINPRAN estimator outputs nothing, not even a false fit, when there is no model 

in the data). This is different from most other robust estimators such as M-

estimators, LMedS, LTS, etc.  

•  The LMedS/LTS estimators always use 50% of the data (for LMedS, see section 

 2.3.3) or h data points out of n data points (for LTS, see section  2.3.4) regardless of 

the true percentage of the inliers in the whole data. MINPRAN, however, will 

identify and use all inliers. Therefore, the MINPRAN estimator can yield more 

accurate results than the LMedS and LTS estimators.  

However, MINPRAN assumes that the outliers are randomly distributed within a certain 

range. This makes MINPRAN less effective in extracting multiple structures and clustered 

outliers. At the same time, it occasionally finds the fits that actually bridge small 

magnitude discontinuities.  

2.4.5 Minimum Unbiased Scale Estimator (MUSE) and Adaptive Least kth Order 

Squares (ALKS) Estimator 

Miller and Stewart proposed the minimum unbiased scale estimator (MUSE) in 1996 

(Miller and Stewart 1996). MUSE was designed to extract surfaces that contained less than 

50% of the data without a priori knowledge about the percentage of the inliers and to detect 

the small-scale discontinuities in the data. MUSE is based on the LMedS method, but it 

improves LMedS and can accurately estimate fits when the data contain multiple surfaces.  
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MUSE randomly selects p-subsets and then estimates fits based on these p-subsets. It then 

calculates the unbiased estimate of the scale for each fit’s k smallest residuals, where k is 

set to all possible values and satisfies 1 ≤ k ≤ N-p; Then the smallest scale estimate over all 

possible k is chosen as the representative value of the hypothesized fits.  Finally, the fit 

from the p-subset with the smallest scale estimate is chosen as the optimum fit. The scale 

estimate can be written as:  
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where [.]1−Φ is the argument of the normal cumulative density distribution.  

Because the scale estimate is biased, a correction is taken to eliminate the bias by 

normalizing the sk. The unbiased minimum scale estimate can be written as: 
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where vk is the kth scale estimate.  

Because it takes O(n3) time to calculate E[minv|k], these are pre-calculated and stored in a 

table, which will be used when MUSE is carried out.  

Inspired by MUSE, Lee and Meer provided the adaptive least kth order squares (ALKS) 

estimator (Lee, Meer et al. 1998). ALKS is based on the least kth order squares (LKS) 

[(Rousseeuw and Leroy 1987), pp.124]. LKS procedure is similar to those of the LMedS 

estimator. The difference between LKS and LMedS is in that LKS uses k data points out of 

n data points (p<k<n), while LMedS uses half of the n data points. The breakdown point 

of LKS is min(k/n, 1-k/n). Because it is impossible for a robust estimator using a one-step 

procedure to have a breakdown point exceeding 50%, ALKS uses multi-step procedure (in 
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each step, ALKS employs LKS with different k value) and recovers the fit to the relative 

majority of the data without any priori knowledge about the scale of inliers.  

ALKS uses k data points out of n data points. The robust estimate of the noise scale can be 

written as: 
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where dkmin is the half-width of the shortest window containing k residuals.  

This estimate of noise scale is only valid when the k is not very large or very small. After 

kŝ is estimated, the variance of the normalized error is computed as follows: 
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ALKS assumes that the optimum value of k should yield the least 2
kΕ . 

In order to estimate the correct k, a random sampling technique, similar to that used in 

LMedS and RANSAC, is also employed in ALKS. The ALKS method can deal with data 

with multiple structures, but it cannot resist the influence of the extreme outliers. 

The authors of MUSE and those of ALKS consider robust scale estimate in their methods 

and they both can obtain a greater than 50% breakdown point. MUSE and ALKS can 

perform better than LMedS and M-estimators at small-scale discontinuities. However, 

MUSE needs a lookup table for the scale estimate correction; ALKS is limited in its ability 

to handle extreme outliers. Another problem we found in ALKS is its instability under a 

small percentage of outliers.  
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2.4.6 Residual Consensus (RESC) Estimator 

Yu et al. presented a highly robust estimator for range image segmentation and 

reconstruction (Yu, Bui et al. 1994). Because this method considers residual consensus, it 

is called RESC. RESC greatly improves the robustness of an estimator to outliers. 

Although there have been some estimators appearing in the literature (such as Hough 

Transform and RANSAC) that might tolerate more than 50% outliers, RESC claims that it 

can reach a high breakdown point which can tolerate more than 80% outliers. This 

attractive characteristic of the RESC method is achieved by using a histogram compression 

approach for residual consensus.  

The basic idea of the RESC method is that if a model is correctly fitted, the residuals of 

inliers should be small and, at the same time, the histogram of the residuals should 

concentrate within a small range in the lower part of the histogram. In the RESC method, a 

histogram compression technique plays an important role in residual consensus. The 

histogram compression technique works as follows: 

1. Estimate the original histogram of residuals with as many histogram columns (says 

2000) as possible. The estimated histogram of residuals will be used for 

compression in the following steps. 

2. Decide the column width of the compressed histogram. The width is chosen where 

the first column of the compressed histogram can contain p percent of all data 

points. The value of p is experimentally chosen as 12. Then the number v of 

consecutive columns in the original histogram can be easily determined (these 

consecutive columns of the original histogram will contain p percent of the data 

points). 

3. Then every v columns in the original histogram is compressed into one column in 

the compressed histogram. 

From the details of the histogram compression, we can see that the column width of the 

compressed histogram depends on the noise level, which will change for different types of 

data. Instead of using only residual information in its objective function, the RESC method 
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considers two factors in its objective function: the number of inliers and the residuals of 

the inliers. 

The RESC method defined its objective function as: 
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where i is the ith column in the compressed histogram; hi is the number of points in the ith 

column. α and β  are coefficients which determine the relative importance of hi and i. They 

are empirically determined as: α =1.3; and β =1.0. ψ  is also called histogram power. 

The procedure of the RESC method is as follows: 

1. Randomly choose k sets of p-subset from the whole data points. A modified genetic 

algorithm is used by the RESC method to improve the speed. 

2. Calculate the residuals and compress the histogram of the residuals. 

3. Select a p-subset from the k sets whose histogram power is the highest. 

4. Determine the standard variance of the residuals.  

5. Label the points of this primitive and remove them from the whole data points. 

6. Remove the outliers in the labelled region. 

7. Repeat step 1-6 until all signals are extracted. 

The RESC method is very robust to noise. It finds the parameters by the p-subset 

corresponding to the maximum of the histogram power. However, a disadvantage of the 

RESC method is that it needs user to tune many parameters for the optimal performance.  
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2.5 Conclusion 

In this chapter, we have reviewed several traditional and state-of-the-art robust estimators, 

with their advantages and disadvantages.  In the following chapters, we will, by using the 

extra information inside the residuals, proposed novel efficient robust methods and apply 

them to computer vision tasks.  
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3. Using Symmetry in Robust Model Fitting 
 

 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction  

The pattern recognition and computer vision communities often employ robust methods for 

model fitting (Fischler and Rolles 1981; Rousseeuw 1984; Rousseeuw and Leroy 1987; 

Zhang 1997; Danuser and Stricker 1998; Stewart 1999). It is common to employ 

“regression analysis” to undertake such tasks (Rousseeuw and Leroy, 1987). In particular, 

high breakdown-point methods such as Least Median of Squares (LMedS) and Least 

Trimmed Squares (LTS) have often been used in situations where the data are 

contaminated with outliers. LMedS and LTS are based on the idea that the correct fit will 

correspond to the one with the least median of residuals (for LMedS), or the least sum of 

trimmed squared residuals (for LTS). The essence of the argument claiming a high 

breakdown point for the LMedS is that if the uncontaminated data are in the majority, then 

the median of the squared residuals should be unaffected by the outliers, and thus the 

median squared residual should be a reliable measure of the quality of the fit. Likewise, 

since the LTS method relies only on (the sum of squares of) the h smallest residuals, for 

some choice of the parameter h, it is thought that this should be robust to contamination so 

long as h data points, at least, belong to the true fit.  

1.1.2.  Chapter 3 

Using Symmetry in Robust 
Model Fitting  
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However, though the breakdown point of these methods can be as high as 50% (they can 

be robust to up to 50% contamination), they can break down at unexpectedly lower 

percentages when the outliers are clustered. Due to the affects of clustered outliers, the 

correct fit may not correspond to the fit with the least median of squared residual (for 

LMedS) or the least trimmed squared residuals (for LTS). It is worth mentioning that this 

phenomenon is not limited to LMedS, and LTS. It also happens to most other robust 

estimators such as random sample consensus—RANSAC (Fischler and Rolles 1981), 

residual consensus estimator—RESC (Yu, Bui et al. 1994), adaptive least k squares 

estimator—ALKS  (Lee, Meer et al. 1998), etc. The mechanism of the breakdown in these 

robust estimators is similar to that of the LMedS and LTS (see chapter 4). 

This illustrates a general principle: most robust methods only depend upon a single 

statistical property (the sum of the trimmed squared residuals or the median of the squared 

residuals, for example) and these methods ignore many other properties that the data, or the 

residuals to the fit, should have. The key to salvaging the robustness of LMedS and LTS 

(and some other robust estimators), even in the presence of clustered outliers, can be that 

one looks beyond the standard definition of the robust methods to incorporate other 

measures and statistics into the formulation. In this chapter, we restrict ourselves to one 

such property – symmetry. 

Symmetry is very common and important in our world. When we will fit circles, ellipses, 

or any symmetric object, one of the most basic features in the model is symmetry. In our 

method, we introduce the concept of symmetry distance (SD) and thereby we propose, by 

taking advantage of the symmetry information in the visual data, an improved method, 

called the least trimmed symmetry distance (LTSD). The symmetry we employ, in this 

context, is that of symmetry about a central point (central with respect to the shape of 

interest). The LTSD method is influenced not only by the sizes of the residuals of data 

points, but also by the symmetry of the data points and has applications where one is trying 

to fit a symmetric model (e.g. circle and ellipses). Experimental results show that the 

LTSD approach gives better results than the LMedS method and the LTS method in 

situations where a large percentage of clustered outliers and large standard variance in 

inliers are encountered.  
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The main contributions of this chapter are as follows: 

1. We illustrate situations where LMedS and LTS to fail to correctly fit the data in the 

presence of clustered outliers, and analyze the reasons that cause the breakdown of 

these two methods. This provides an important cautionary note when employing 

these two robust estimators in situations where the outliers are clustered.  

2. We introduce the concept of symmetry distance (SD) into model fitting. The 

concept of SD in computer vision is not novel. However it is a novel concept in the 

field of model fitting. Based on Su et al.’s point symmetry distance (Su and Chou 

2001), we propose a novel symmetry distance and apply it to model fitting.  

3. We experimentally show that the proposed method works better than LMedS and 

LTS under a large percentage of clustered outliers for both simulated and real data. 

This chapter is organized as follows: in section  3.2, the factors that cause both LMedS and 

LTS to fail to fit a model under a large percentage of clustered outliers are explored. In 

section  3.3, a novel symmetry distance measure is given and our proposed method is 

developed in section  3.4.  Experiments demonstrating the utility of the approach (for circle 

fitting and ellipses fitting) are given in section  3.5. Finally, some conclusions and future 

work are summarized in section  3.6.  

3.2 Dilemma of the LMedS and the LTS in the Presence of 

Clustered Outliers 

The LMedS method and the LTS method are based on the idea that the correct fit is 

determined by a simple statistic: the least median of the squared residuals (for LMedS), or 

by the least sum of trimmed squared residuals (for LTS); and that such a statistic is not 

influenced by the outliers.  

Consider the contaminated distribution defined as follows (Haralick 1986; Hampel, 

Rousseeuw et al. 1986b): 
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           F=(1- ε)F0+ εH                                         ( 3.1) 

where F0 is an inlier distribution, and H is an outlier distribution. 

 

 

 

 

 

 

 

 

 

Figure  3.1: An example where LMedS and LTS (h is set to 0.5n) fail to fit a circle yet there 

are under 44.5% outliers – though, of course, the outliers are clustered.                       

Equation ( 3.1) is also called the gross error model. When the standard variance of F0 is 

small (<<1) and that of H is large or H is uniform distributed, the assumptions leading to 

the robustness of LMedS or LTS, are true. However, when F0 is “scattered”, i.e. the 

standard variance of F0 is big, and H is clustered distributed with high density, the 

assumption is not always true.  

Let us investigate an example. In Figure  3.1, F0 (bivariate normal with unit variance) 

including 100 data points were generated by adding the noise to samples of a circle with 

radius 10.0 and center at (0.0, 0.0). Then 80 clustered outliers were added, possessing a 

spherical bivariate normal distribution with one unit standard variance and mean (20.0, 

6.0). As Figure  3.1 shows, both LMedS and LTS failed to fit the circle: LMS returned the 

result with a radius equal to 7.4239 and the center was located at (13.1294, 8.6289). The 

results obtained by LTS were: the radius was 19.3069 and the center was at (1.1445, 

10.1470). 
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It is important to point out that the failure is inherent, and not simply an artifact of our 

implementation. Let us check the median of the residuals (for LMedS) and the sum of 

trimmed squared residuals (for LTS) and we will understand why LMedS and LTS failed 

to fit to the circle. The median of residuals of the perfect fit is 5.7928. However the median 

of residuals of final result by the LMedS method is 5.1479.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.2: LMedS searches for the “best” fit with the least median of residuals. 

Figure  3.2 shows the time evolution of the parameters: median of residuals (top left), 

centre of the fitted circle (x coordinate and y coordinate in the top right and bottom left, 

respectively), and the radius of the fitted circle (bottom right) as LMedS searches for the 

“best” fit with the least median of residuals. (Note: the iterations pass by the correct fit 

(pointed out by arrows) proceeding to fits with even lower median of residuals.) In fact, 

during the searching procedure, the LMedS estimator consistently minimizes the median of 

the residuals, starting with initial fits that have a larger median residual than the true fit, but 

successively finding fits with lower median residuals – proceeding to even lower median 

residuals than that possessed by the true fit. 

The reason that LTS failed is similar. LTS finds the fit with smallest trimmed squared 

residuals. The value of the least sum of trimmed squared residuals obtained is 32.6378. 

However, the same statistic for the “true fit” is 58.6688. Clearly, LTS has “correctly”, by 
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its criterion, obtained a “better” fit (but in fact, the wrong one). The problem is not with the 

implementation but with the criterion 

 

 

 

 

 

 

 

         (a) 

                       (b)                 (c)                   

Figure  3.3: Breakdown Plot: (a) One case of the distribution of data; The results of LMedS 

(b) and LTS (c) in circle fitting will be affected by the standard variance of inliers and 

percentages of clustered outliers. 

Now, let us consider another example showing that the results of the LMedS and the LTS 

are affected by the standard variance of the inliers. We generated a circle with radius 10.0 

and center at (0.0, 0.0). In addition, clustered outliers were added to the circle with mean 

(20.0, 6.0) and unit standard variance. In total, 100 data points were generated. At first, we 

assigned 100 data to the circle without any outliers. Then we repeatedly moved two points 

from the circle to the clustered outliers until 50 data were left in the circle. Thus, the 

percentage of outliers changed from 0 to 50%. In addition, for each percentage of clustered 

outliers, we varied the standard variance of the inliers from 0.4 to 1.6 with a step size of 
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0.3. Figure  3.3 (a) illustrates one example of the distribution of the data, with 38% 

clustered outliers and the standard variance of inliers 1.3.  

From Figure  3.3 (b), we can see that when the standard variance of inliers is no more than 

1.0, LMedS can give the right results under a high percentage of outliers (more than 44%). 

However, when the standard variance of inliers is more than 1.0, LMedS does not give the 

right result even when the percentage of outliers is less then 40%.  From Figure  3.3 (c), we 

can see when the standard variance of inliers is 0.4, the LTS estimator can correctly give 

the results even under 50% clustered outliers; while when the standard variance of inliers is 

1.6, LTS does not give the right results even when only 30 percent of the data are outliers. 

From the discussion above, we now see several conditions under which LMedS and LTS 

failed to be robust. A crucial point is: these methods measure only one single statistic: the 

least median of residuals or the least sum of trimmed squared of residuals, omitting other 

characteristics of the data. If we look at the failures, we can see that the results lost the 

most basic and common feature of the inliers with respect to the fitted circle—symmetry. 

In the next section, we will introduce the concept of symmetry distance into robust 

regression methods and propose an improved method, called the Least Trimmed Symmetry 

Distance (LTSD), by which the better performance is acquired even when data include 

clustered outliers. 

3.3 The Symmetry Distance 

Symmetry is considered a pre-attentive feature that enhances recognition and 

reconstruction of shapes and objects (Attneave 1995). Symmetry exists almost everywhere 

around us. A square, a cube, a sphere, and a lot of geometric patterns show symmetry. 

Architecture usually displays symmetry. Symmetry is also an important parameter in 

physical and chemical processes and is an important criterion in medical diagnosis. Even 

we human beings show symmetry, (for instance, our faces and bodies are roughly 

symmetrical between right and left). One of the most basic features in the shapes of models 

we often fit/impose on our data, e.g. circles and ellipsis, is the symmetry of the model. 
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Symmetric data should suggest symmetric models and data that is symmetrically 

distributed should be preferred as the inlier data (as opposed to the outliers). For decades, 

symmetry has widely been studied in computer vision community. For example, 

considerable efforts have been focused on the detection of symmetry in images in regard to 

mirror symmetries (Marola 1989; Nalwa 1989) and in regard to circular symmetries (Bigun 

1988; Reisfeld, Wolfson et al. 1992); Kirby etc. used the symmetric features of images for 

image compression (Kirby and Sirovich 1990); Zabrodsky treated symmetry as a 

continuous feature and applied it in finding the orientation of symmetric objects 

(Zabrodsky, Peleg et al. 1995); Skewed symmetries in 3D structures have been extensively 

studied (Oh, Asada et al. 1988; Ponce 1990; Gross and Boult 1994). Symmetry has also 

been treated as a feature in cluster analysis (Su and Chou 2001). More detailed definitions 

of symmetry can be found in (Zabrodsky 1993). We demonstrate here that symmetry can 

also be used as a feature to enhance the performance of robust estimators when fitting 

models with symmetric structure. 

3.3.1 Definition of Symmetry 

There are many kinds of symmetry in existence in the world. Generally speaking, 

symmetry can be classified into the following four basic types, which are shown in Figure 

 3.4, (Zabrodsky 1993; Zabrodsky, Peleg et al. 1995): 

1. Mirror-symmetry: if an object is invariant under a reflection about a line (for 2D) or 

a plane (for 3D). 

2. Cn-symmetry: if an object is invariant under rotation of n
π2 radians about its center 

(for 2D) or a line passing through its center (for 3D). 

3. Dn-symmetry:  if an object has both mirror-symmetry and Cn-symmetry. 

4. Circular-symmetry: if an object has ∞C -symmetry. 
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                                       (c)                                                               (d) 

Figure  3.4: Four kinds of symmetries: (a) mirror-symmetry; (b) C4-symmetry; (c) D4-

symmetry; (d) circular symmetry.  

3.3.2 The Symmetry Distance 

The exact mathematical definition of symmetry (Weyl 1952; Miller 1972) is insufficient to 

describe and quantify symmetry found both in the natural world and in the visual world.  

Su and Chou proposed a symmetry distance measure based on the concept of “point 

symmetry” (Su and Chou 2001). Given n points xi, i =1,…n and a reference vector C (e.g. 

the centroid of the data), the point symmetry distance between a point xj and C is defined 

as follows: 
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From equation ( 3.2), we can see that the point symmetry distance is non-negative by 

definition. In essence, the measure tries to “balance” data points with others symmetric 

about the centroid – for example, xi=(2C-xj) exists in the data, ds(xj,C)=0.  

However, according to ( 3.2), one point could be used repeatedly as the “balancing point” 

with respect to the center. This does not seem to properly capture the notion of symmetry. 

In order to avoid one point being used as a “symmetric point” more than one time by other 

points, we refine the point symmetry distance between a point xj and C as follows: 
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where ℜ is a set of points that have been used as “symmetric point”.  

Based on the concept of “point symmetry distance”, we propose a non-metric Symmetry 

Distance (SD). Given a pattern x consisted of n points x1,… xn and a reference vector C,  

the symmetry distance of the pattern x with respect to the reference vector C is: 

SDn(x,C)= ∑
=

n

i
is CxD

n 1

),(1                                           ( 3.4) 

When the SD of a pattern is equal to 0.0, the pattern is perfect symmetric; when the SD of a 

pattern is very big, the pattern has little symmetry.  

3.4 The Least Trimmed Symmetry Distance (LTSD) Method 

We proposed a new method, which couples the LTS method with the symmetry distance 

measure defined in sub-section  3.3.2. That is, besides residuals, we also choose symmetry 

distance as a criterion in the model fitting. For simplicity, we call the proposed method 

LTSD (Least Trimmed Symmetry Distance). Mathematically, the LTSD estimate can be 

written as: 
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),(minargˆ
,

CxSDhCθ
θ =                                     ( 3.5) 

Only h data points with the smallest sorted residuals are used to calculate the symmetry 

distance. The estimated parameters correspond to the least symmetry distance.  

The specific details of the proposed method are given as follows:  

1. Set repeat times (RT) according to equation ( 2.23). Initialise h with [(n+p+1)/2] ≤ h 

≤ n. If we want LTSD to have a high breakdown point, say 50%, we can set 

h=(n+p+1)/2. 

2. Randomly choose p-subsets, and extend to h-subset H1 by the method (2) in sub-

section  2.3.4. 

3. Compute 1̂θ  by LS method based on H1. Compute symmetry distance SD1 based on 

1̂θ  and H1 using equation ( 3.4) in sub-section  3.3.2 and using the centre of the fit 

(circle or ellipse) as the reference vector C. Decrement RT and if RT is smaller than 

0, go to step 4, otherwise, go to step 2. We calculate the parameters θ̂ based on h-

subset instead of p-subset in order to improve the statistical efficiency. 

4. Finally, output θ̂ with the lowest SD. 

3.5 Experimental Results 

In this section, we will show several examples using the proposed method to fit a model 

with symmetrical structures. Circle fitting and ellipses fitting have been very popular 

topics in the computer vision field. One of the obvious characteristics of circles and 

ellipses is that they are symmetric. We first present an example of circle fitting; then we 

present a relatively more complicated example of ellipse fitting. The results are compared 

with those of the LMedS method and the LTS method. 
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3.5.1 Circle Fitting 

In Figure  3.5, about 45 percent clustered outliers were added to the original circle data. 

Since LMedS and LTS only rely on the residuals of the data points, their results were 

affected by the standard variance of the inliers and percentages of the clustered outliers. 

Therefore, they failed to fit the circle under a high percentage of clustered outliers (see 

Figure  3.1). However, because the LTSD method considers the symmetry of the object, 

this enables LTSD find the right model (see Figure  3.5): the true centre and radius of the 

circle are respectively (0.0,0.0) and 10.0; by the LTSD method, we obtained centre (-0.23, 

0.01) and radius10.06. 

 

 

 

 

 

 

 

 

 

 

Figure  3.5: Using the symmetry of the circle, the LTSD method found the approximately 

right results under 44.5% clustered outliers.              

Another example showing the advantages of the proposed method is given in Figure  3.6 (a) 

(corresponding to Figure  3.3 (a)). From Figure  3.6 (a), we can see that when the outliers 

are clustered, the LMedS and LTS broke down under very low percentages of outliers, in 

this case, they both broke down under 38% outliers! In comparison to the LMedS and LTS 

methods, the proposed method gives the most accurate results. The proposed method is 

affected less by the standard variance of the inliers and the percentages of the clustered 

outliers. Figure  3.6 (b) shows that the radius found by the LTSD method in circle fitting 

(true radius is 10.0) changed less under different standard variance of the inliers and 

percentages of clustered outliers. In comparison to Figure  3.3 (b) and (c), the fluctuation of 
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the radius found by the LTSD method is smaller. Even when 50 percent clustered outliers 

exist in the data and the standard variance of inliers is 1.6, the results did not (yet) break 

down. However, both the LMedS and the LTS broke down.                    

 

 

 

 

 

 

 

 

 

   (a)          (b) 

Figure  3.6: (a) A comparative result of the LTSD, LMedS, and LTS with 38% clustered 

outliers; (b) the results of the LTSD method is affected less by the standard variance of 

inliers and percentages of clustered outliers. 

3.5.2 Ellipse fitting 

Ellipses are one of most common and important primitive models in computer vision and 

pattern recognition, and often occur in geometric shapes, man-made and natural scenes. 

Ellipse fitting is a very important task for many industrial applications because it can 

reduce the data and benefit the higher level processing (Fitzgibbon, Pilu et al. 1999). 

Circles may be projected into ellipses under perspective projection. Thus ellipses are 

frequently used in computer vision for model matching (Sampson 1982; Fitzgibbon, Pilu et 

al. 1999; Robin 1999). In this subsection, we apply the proposed robust method—LTSD to 

ellipses fitting.  

A general conic equation can be written as follows: 

ax2 + bxy + cy2 + dx + ey + f = 0                          ( 3.6) 
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where (a,b,c,d,e,f) are the parameters needed to find from the given data. When b2 < 4ac, 

the equation above corresponds to ellipses. 

The ellipse can also be represented by its more intuitive geometric parameters: 

1)cossincossin(

)sincossincos(
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                         ( 3.7) 

where (xc, yc) is the center of the ellipse, A and B are the major and minor axes, and θ is the 

orientation of the ellipse. 

The relation between (a,b,c,d,e,f) and (xc, yc, A, B, θ) can be written as (Robin 1999): 

 

 

 

 

                    (5.3) 

 

 

 

 

It is convenient to find (a,b,c,d,e,f) first by the given data and then convert to (xc, yc, A, B, 

θ). 

As illustrated in Figure  3.7 and Table  3.1, 200 data were generated with 40% clustered 

outliers. The outliers were compacted within a region of radius 5 and center at (20.0, 5.0). 

The ellipse had a standard variance 0.8, major axis 10.0, minor axis 8.0, center (0.0,0.0), 

and orientation to horizon direction θ is 0.0 degree. The results of LTS and LMedS were 

seriously affected by the clustered outliers. However, the LTSD method worked well. 
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Figure  3.7: Comparison of the results obtained by the LTSD method, LTS and LMedS in                

ellipse fitting under 40% clustered outliers.    

Next, we will apply the LTSD method to real images. 

3.5.3 Experiments with Real Images  

The first example is to fit an ellipse in an image of a mouse pad, shown in Figure  3.8. The 

edge image was obtained by using Canny operator with threshold 0.07. In total, 310 data 

points were in the edge image (Figure  3.8 (b)).  The clustered outliers, due to the flower, 

occupy 50% of the data. Three methods (the LTSD, LTS and LMedS) were applied to 

detect the mouse pad edge.  As shown in Figure  3.8 (c), both LTSD and LTS correctly 

found the edge of the mouse pad. However, LMedS fails to detect the edge of the mouse 

 xc yc Major axis Minor axis θ (deg) 

True value 0.0 0.0 10.0 8.0 0.0 

The LTSD method -0.125 -0.145 9.760 7.810 6.355 

The LTS method 19.786 5.162 3.328 3.035 34.129 

The LMedS method 9.560 5.208 11.757 3.679 -3.307 

Table  3.1: Comparison of the estimated parameters by the LTSD, LTS, and 

LMedS methods in ellipses fitting under 40% clustered outliers.  
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pad. This is because under the condition that the standard variance of inliers is small, the 

statistical efficiency of LTS is better than LMedS. 
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         (b)                       (c) 

Figure  3.8: Fitting a mouse pad (a) a mouse pad with some flower; (b) the edge image by 

using Canny operator; (c) the results obtained by the LTSD, LTS and LMedS methods. 

Figure  3.9 shows the use of the LTSD method to fit an ellipse to the rim of a cup. Figure 

 3.9 (a) gives a real cup image. After applying the Prewitt operator, the edge of the cup is 

detected is shown in Figure  3.9 (b). We can see that there is a high percentage (about 45%) 

of clustered outliers existing in the edge image, external to the rim of the cup (the ellipse 

we shall try to fit), mainly due to the figure on the cup. However, the rim of the cup has a 

symmetric elliptical structure. Figure  3.9 (c) shows that the LTSD method correctly finds 

the ellipse in the opening of the cup, while both the LTS and the LMedS fail to correctly fit 

the ellipse. 
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(b)               (c) 

Figure  3.9: Fitting the ellipse in a cup (a) a real cup image; (b) the edge of the cup by 

applying Prewitt operator; (c) comparative results obtained by the LTSD, LTS and LMedS 

methods 

3.5.4 Experiments for Data with Uniform Outliers  

Finally, we investigated the characteristics of the LTSD under uniform outliers. We 

generated 200 data points with 40% uniform outliers (see Figure  3.10). The ellipse had a 

standard variance 0.5, major axis 10.0, minor axis 8.0, center (0.0, 0.0), and orientation to 

horizon direction θ is 0.0 degree. The uniform outliers were randomly distributed in a 

rectangle with left upper corner (-20.0, 20.0) and right lower corner (20.0, -20.0). We 

repeated the performance 100 times and the averaged results were shown in Table  3.2.  We 

can see the LTSD method can also work well in uniform outliers. 
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Figure  3.10: An ellipse with 40% randomly distributed outliers. 

 

 xc yc Major axis Minor axis θ (deg) 

True value 0.0 0.0 10.0 8.0 0.0 

The LTSD method -0.107 0.121 10.005 8.024 -1.119 

The LTS method -0.009 0.120 9.877 7.959 -2.117 

The LMedS method 0.007 0.002 9.987 8.062 -0.981 

Table  3.2: Comparison of the estimated parameters by the LTSD, LTS, and LMedS 

methods in ellipses fitting with 40% randomly distributed outliers. 

3.6 Conclusion 

The fragility of traditionally employed robust estimators: LMedS and LTS, in the presence 

of clustered outliers, has been demonstrated in this chapter (a similar story applies more 

widely – see chapter 4). These robust estimators can break down at surprisingly lower 

percentage of outliers when the outliers are clustered. Thus this chapter provides an 

important cautionary note to the computer vision community to carefully employ robust 

estimators when outliers are clustered. We also proposed a new method that incorporates 

symmetry distance into model fitting. The comparative study shows that this method can 

achieve better performance than the least median of squares method and the least trimmed 
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squares method especially when large percentages of clustered outliers exist in the data and 

the standard variance of inliers is large. The price paid for the improvement in fitting 

models is an increase of the computational complexity due to the complicated definition of 

symmetry distance. It takes about O(n2) time to compute symmetry distance (SD) for each 

p-subset. The proposed method can be applied to the fitting of other symmetric shapes and 

to other fields. 

Unfortunately, LTSD was especially designed for spatially symmetric data distributions. 

For inlier distributions that are not spatially symmetric (including structures that, though 

they may be symmetric, have large amounts of missing or occluded data so that the visible 

inliers are not symmetric), the LTSD is not a good choice (Note: for this kind of data, we 

have developed other novel highly robust estimators that will be presented in the following 

chapters). However, the LTSD does provide a feasible way to greatly improve the 

achievements of conventional estimators –the LMedS and the LTS, especially, when the 

data contain inliers (with symmetry) with large variance and are contaminated by large 

percentage of clustered outliers.  

In the next chapter, we will take advantage of the information in the structure of the pdf of 

residuals, and propose a more general highly robust estimator: MDPE, which can be 

widely applied in many computer tasks and is applicable for missing data, data with 

occlusion, and data without symmetry. The same motivation is also behind several 

improved methods: QMDPE and vbQMDPE (in chapter 5 and chapter 6). 
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4. MDPE: A Novel and Highly Robust Estimator 

 

 

 

 

 

 

4.1 Introduction 

Many robust estimators (such as M-estimators, LMedS, LTS, etc.) have been developed in 

the statistics field. However, they assume that inliers occupy an absolute majority of the 

whole data, and thus, they will breakdown for data involving an absolute majority of 

outliers. Obviously, the requirement for 50% or more data belonging to inliers may not be 

always satisfied, e.g., when the data contain multiple surfaces, when data from multiple 

views are merged, or when there are more than 50% noise data points existing in the data. 

For these cases, we need to find a more robust estimator that can tolerate more than 50% 

outliers.  

This chapter presents a novel robust estimator (MDPE). This estimator applies 

nonparametric density estimation and density gradient estimation techniques in parametric 

estimation (“model fitting”). The goals in designing MDPE are: it should be able to fit 

signals corresponding to less than 50% of the data points and be able to fit data with multi-

structures. In developing MDPE, we make the common assumption that the residuals of 

1.1.3.  Chapter 4 

MDPE: A Novel and Highly 
Robust Estimator 
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the inliers are contaminated by Gaussian noise (although the precise nature of the noise 

distribution is not that essential, depending only upon zero mean and unimodality). We 

also assume that the signal (we seek to fit) occupies a relative majority of the data – that is, 

there are no other populations, belonging to valid structures, that singly has a larger 

population. In other words, if there are multiple structures, we seek to fit the largest 

structure (in terms of population of data – which is often related to but not necessarily 

identical to geometric size). Of course, in a complete application of MDPE, such as the 

range segmentation algorithm presented in the next chapter, one can apply the estimator 

serially to identify the largest structured population, remove it, and then seek the largest in 

the remaining population etc. 

Key components of MDPE are: Probability Density estimation in conjunction with Mean 

Shift techniques (Fukunaga and Hostetler 1975). The mean shift vector always points 

towards the direction of the maximum increase in the probability density function (see 

section 4.2). Through the mean shift iterations, the local maximum density, corresponding 

to the mode (or the center of the regions of high concentration) of data, can be found. 

MDPE optimizes an objective function that measures more than just the size of the 

residuals. It considers the following two factors at the same time: 

•  The density distribution of the data points (in residual space) estimated by the 

density estimation technique.  

•  The size of the residual corresponding to the local maximum of the probability 

density distribution.  

If the signal is correctly fitted, the densities of inliers should be as large as possible; at the 

same time, the center of the high concentration of data should be as close to zero as 

possible in the residual space. Thus, both the density distribution of data points in residual 

space and the size of the residual corresponding to the local maximum of the density 

distribution, are considered as important characteristics in the objective function of MDPE.   

MDPE can tolerate a large percentage of outliers and pseudo-outliers (empirically, usually 

more than 85%) and it can achieve better performance than other similar robust estimators. 
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To demonstrate the performance of MDPE, we compare, based upon tests on both 

synthetic and real images, MDPE with other five popular robust estimators (from both 

statistics and computer vision field): Hough Transform (HT), Random Sampling 

Consensus (RANSAC), Least Median of Squares (LMedS), Residual Consensus (RESC), 

and Adaptive Least kth Order Squares (ALKS). Experiments show that MDPE has a higher 

robustness to outliers and fewer errors than the other five estimators.  

The contributions of this chapter can be summarized as follows:  

•  We apply nonparametric density estimation and density gradient estimation 

techniques in parametric estimation.  

•  We provide a novel estimator, MDPE, which can usually tolerate more than 85% 

outliers although it is simple and easy to implement.  

•  The performance of MDPE has been compared with those of five other popular 

methods, including “traditional” ones (RANSAC, Hough Transform, and LMedS) 

and recently proposed ones (RESC and ALKS).  

The organization of this chapter is as follows: density gradient estimation and the mean 

shift method are introduced in section  4.2. Section  4.3 describes the MDPE method. 

Comparative experimental results of MDPE and several other robust estimators are 

contained in section  4.4.  Finally, we conclude with a summary and a discussion of further 

possible work in section  4.5. 

4.2 Nonparametric Density Gradient Estimation and Mean 

Shift Method 

There are several nonparametric methods available for probability density estimation: the 

histogram method, the naive method, the nearest neighbor method, and kernel estimation 

(Silverman 1986).  The kernel estimation method is one of the most popular techniques 

used in estimating density. Given a set of n data points {Xi}i=1,…,n in a d-dimensional  
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Euclidian space Rd, the multivariate kernel density estimator with kernel K and window 

radius (band-width) h is defined as follows ((Silverman 1986), p.76) 
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The kernel function K(x) should satisfy some conditions ((Wand and Jones 1995), p.95).  

There are several different kinds of kernels. The Epanechnikov kernel ((Silverman 1986), 

p.76) is one optimum kernel which yields minimum mean integrated square error (MISE): 
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where cd is the volume of the unit d-dimensional sphere, e.g., c1=2, c2=π, c3=4π/3. 

The estimate of the density gradient can be defined as the gradient of the kernel density 

estimate ( 4.1): 
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According to ( 4.3), the density gradient estimate of the Epanechnikov kernel can be written 

as: 
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where the region Sh(x) is a hypersphere of the radius h, having the volume d
d ch , centered 

at x, and containing nx data points. 

The mean shift vector Mh(x) is defined as  
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Equation ( 4.4) can be rewritten as:   
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Equation ( 4.6) firstly appeared in (Fukunaga and Hostetler 1975). Equation ( 4.5) shows 

that the mean shift vector is the difference between the local mean and the center of the 

window.  Equation ( 4.6) shows the mean shift vector is an estimate of the normalized 

density gradient. The mean shift is an unsupervised nonparametric estimator of density 

gradient. One characteristic of the mean shift vector is that it always points towards the 

direction of the maximum increase in the density. 

The Mean Shift algorithm can be described as follows: 

1. Choose the radius of the search window 

2. Initialize the location of the window. 

3. Compute the mean shift vector Mh(x). 

4. Translate the search window by Mh(x). 

5. Step 3 and step 4 are repeated until convergence. 

The converged centers (or windows) correspond to modes (or centers of the regions of high 

concentration) of data represented as arbitrary-dimensional vectors. The proof of the 

convergence of the mean shift algorithm can be found in (Comaniciu and Meer 2002a). 

Since its introduction by Fukunaga and Hostetler (1975), the mean shift method has been 

extensively exploited and applied, for its ease and efficiency, in low level computer vision 

tasks such as video tracking (Comaniciu, Ramesh et al. 2000), image filtering (Comaniciu 

and Meer 1999a), clustering (Cheng 1995; Comaniciu and Meer 1999b) and image 

segmentation (Comaniciu and Meer 1997; Comaniciu and Meer 2002a).   
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Figure  4.1: One example where the mean shift estimator found the local maximum of the 

probability densities. 

To illustrate the mean shift method, two sets of samples from normal distributions were 

generated, each having 1000 data points and with unit variance. One had a distribution 

with zero mean, and the other had a mean of 4.0 (see Figure  4.1). These points were 

distributed along the abscissa but here we choose to plot only the corresponding 

probability density at those data points). We selected two initial points as the centers of the 

initial windows: P0 (-2.0) and P1 (2.5). The search window radius was chosen as 1.0. After 

applying the mean shift algorithm, the mean shift estimator automatically found the local 

maximum densities (the centers of converged windows). Precisely, P0’ located at -0.0305, 

and P1’ with 4.0056. The centers (P0’ and P1’) of the converged windows correspond to 

the local maximum probability densities, that is, the two modes. 
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4.3 Maximum Density Power Estimator—MDPE 

4.3.1 The Density Power (DP) 

Random sampling techniques have been widely used in a lot of methods, for example, 

RANSAC, LMedS, RESC, ALKS, etc (see chapter  2). Each uses the random sampling 

techniques to choose p points, called a p-subset, to determine the parameters of a model for 

that p-subset (p equals 2 for a line, 3 for a circle or plane, 6 for a quadratic curve), and 

finally outputs the parameters determined by the p-subset with the minimum or maximum 

of the respective objective function. They differ in their objective functions used to rank 

the p-subsets.  Here we define a new objective function. 

When a model is correctly fitted, there are two criteria that should be satisfied:  

(1) Data points on or near the model (inliers) should be as many as possible; 

(2) The residuals of inliers should be as small as possible. 

Most objective functions of existing methods consider either one of the criteria or both. 

RANSAC (Fischler and Rolles 1981) applies criterion (1) into its optimization process and 

outputs the results with the highest number of data points within an error bound; The Least 

squares method uses criterion (2) as its objective function, but minimizes the residuals of 

all data points without the ability to differentiate the inliers from the outliers; MUSE, 

instead of minimizing the residuals of inliers, minimizes the scale estimate provided by the 

kth ordered absolute residual. RESC combines both criteria into its objective function, i.e., 

the histogram power. Among all these methods, RESC obtains the highest breakdown 

point. It seems that it is preferable to consider both criteria in the objective function.  

The new estimator we introduce here, MDPE, also considers these two criteria in its 

objective function. We assume the residuals of the inliers (good data points) satisfy a zero 

mean, smooth and unimodal distribution: e.g., a Gaussian-like distribution. If the model to 

fit is correctly estimated, the data points on or near the fitted structure should have a higher 

probability density; and at the same time, the center of the converged window by the mean 

shift procedure (corresponding to the highest local probability density) should be as close 
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to zero as possible in residual space. According to the above assumptions, our objective 

function ψDP considers two factors: (1) the densities f̂ (Xi) of all data points within the 

converged window Wc and (2) the center Xc of the converged window. Thus ψDP 

∑
∈

∝
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)(ˆ
iX

iXf  and ψDP 
Xc
1∝ . We define the probability density power function as 

follows: 
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where Xc is the center of the converged window Wc obtained by applying the mean shift 

procedure.  α  is a factor that adjusts the relative influence of the probability density to the 

residual of the point corresponding to the center of the converged window. α  is 

empirically set to 1.0. Experimentally, we have found the above form to behave better than 

various other alternatives having the same general form. 

If a model is found, Xc  is very small, and the densities within the converged window are 

very high. Thus our objective function will produce a high score. Experiments, presented 

in the next section, show that MDPE is a very powerful method for data with a large 

percentage of outliers.  

4.3.2 The MDPE Algorithm 

As Lee stated (Lee, Meer et al. 1998), any one-step robust estimator cannot have a 

breakdown point exceeding 50%, but estimators adopting multiple-step procedures with an 

apparent breakdown point exceeding 50% are possible.  

MDPE adopts a multi-step procedure. The procedure of MDPE can be described as 

follows: 

(1) Choose a search window radius h, and a repetition count m. The value m can be 

chosen according to equation ( 2.23). 
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(2) Randomly choose one p-subset, estimate the model parameters by the p-subset, 

and calculate the signed residuals of all data points. 

(3) Apply the mean shift steps in the residual space with initial window center zero. 

Notice that the mean shift is employed in one-dimensional space – signed residual 

space. The converged window center C can be obtained by the mean shift 

procedure in section  4.2.  

(4) Calculate the densities (using equation  4.1) corresponding to the positions of all 

data points within the converged window with radius h in the residual-density 

space. 

(5) Calculate the density power according to equation ( 4.7). 

(6) Repeat step (2) to step (5) m times. Finally, output the parameters with the 

maximum density power.  

The results are from one p-subset, corresponding to the maximum density power. In order 

to improve the statistical efficiency, a weighted least square procedure [(Rousseeuw and 

Leroy 1987), p.202] is carried out after the initial MDPE fit. However, a more robust scale 

estimator TSSE (which was proposed at the later stage—see chapter  7) can also be 

employed.  

Instead of estimating the fit involving the absolute majority in the data set, MDPE finds a 

fit having a relative majority of the data points. This makes it possible, in practice, for 

MDPE to obtain a high robustness that can tolerate more than 50% outliers. 

4.4 Experiments and Analysis 

Next, we will compare the abilities of several estimators (MDPE, RESC, ALKS, LMedS, 

RANSAC, and Hough Transform) to deal with data with a large percentage of outliers. We 

choose RANSAC and Hough Transform as two methods to compare with, because they are 

very popular methods and have been widely applied in computer vision. Provided with the 

correct error tolerance (for RANSAC) or bin size (for Hough Transform), they can tolerate 
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more than 50% outliers. Although LMedS has only 0.5 breakdown point and cannot 

tolerate more than 50% outliers, it needs no prior knowledge of the variance of inliers. 

RESC and ALKS are two relatively new methods and represent modern developments in 

robust estimation. We also note that RANSAC, LMedS, RESC, ALKS, and MDPE all 

adopt similar four-step procedures: randomly sampling; estimating the parameter candidate 

for each sample; evaluating the quality of each candidate; outputting the final parameter 

estimate with the best quality measure. 

In this section, we will investigate the characteristics of the six methods under clustered 

outliers and different percentages of outliers. We also investigate the time complexity of 

the five comparative methods (LMedS, RANSAC, ALKS, RESC, and MDPE). We 

produce the breakdown plot of the six methods, and test the influence of the choice of 

window radius on the MDPE. Unless we specify, the window radius h for MDPE will be 

set at 2.0 for the experiments in this section.  

4.4.1 Experiment 1 

In this experiment, the performance of MDPE in line fitting and circle fitting will be 

demonstrated and its tolerance to large percentages of outliers will be compared with five 

other popular methods: RANSAC, Hough Transform, LMedS, RESC, and ALKS. The 

time complexity of the five methods (except for Hough Transform) will also be evaluated 

and compared. We will show that some methods break down. We can (and have) checked 

whether such a breakdown is an artifact of implementation (e.g. randomly sampling) or 

whether the breakdown is the result of the objective function for that method scoring 

wrong fit “better” than the true one—see discussions later (sub-section  4.4.1.1) .    

4.4.1.1 Line Fitting 

We generated four kinds of data (step, three-step, roof, and six-line), each with a total of 

500 data points. The signals were corrupted by Gaussian noise with zero mean and 

standard variance σ. Among the 500 data points, α data points were randomly distributed 

in the range of (0, 100). The i'th structure has ni data points.  
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(a) Step: x:(0-55), y=30, n1=65; x:(55-100), y=40, n2=30; α=405; σ=1.5. 

(b) Three-step: x:(0-30), y=20, n1=45; x:(30-55), y=40, n2=30; x:(55-80), y=60, n3=30; 

x:(80-100), y=80, n4=30; α=365; σ=1. 

(c) Roof: x:(0-55), y=x+30, n1=35; x:(55-100), y=140-x, n2=30; α=435; σ=1. 

(d) Six-line: x:(0-25), y=3x, n1=30; x:(25-50), y=150-3x, n2=20; x:(25-50), y=3x-75, 

n3=20; x:(50-75), y=3x-150, n4=20; x:(50-75), y=225-3x, n5=20; x:(75-100), y=300-

3x, n6=20; α=370; σ=0.1. 
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Figure  4.2:  Comparing the performance of six methods: (a) fitting a step with a total of 

87% outliers; (b) fitting three steps with a total of 91% outliers; (c) fitting a roof with a 

total of 93% outliers; (d) fitting six lines with a total of 94% outliers. 
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From Figure  4.2, we can see that because LMedS has only a 0.5 breakdown point, it cannot 

resist more than 50% outliers. Thus, LMedS failed to fit all the four signals; The ALKS, 

RESC and MDPE approaches all have higher robustness, compared with LMedS, to 

outliers. However, the results show that ALKS is not applicable for the signals with such 

large percentages of outliers because it failed in all four cases. RESC, although having a 

very high robustness, fitted one model, but failed three.  The Hough Transform could not 

correctly fit the step signals, which happen to fall near an inclined line, with large 

percentages of outliers. Provided with the correct error bound of inliers, RANSAC 

correctly fitted three signals, but failed one. Only the MDPE method correctly fitted all the 

four signals. The MDPE didn’t breakdown even with 94% outliers. In Figure  4.2 (d), we 

can see, although MDPE, Hough Transform, and RANSAC did not breakdown, they found 

different lines in the six-line signal (according to their own criterion). 

Among these six methods, MDPE, RESC and RANSAC are similar to each other. They all 

randomly choose p-subsets and try to estimate parameters by a p-subset corresponding to 

the maximum value of their object function. Thus, their objective functions are the core 

that determines how much robustness to outliers these methods have. RANSAC considers 

only the number of data points falling into given error bound of inliers; RESC considers 

the number of data points within the mode and the residual distributions of these points; 

MDPE considers not only the density distribution of the mode, which is assumed having 

Gaussian-like distribution, in the residual space, but also the size of the residual 

corresponding to the center of the mode.   

It is important to point out that the failures of RESC, ALKS, LMedS, and RANSAC, and 

Hough Transform in some of or all of the four signals is inherent and not simply an artefact 

of our implementation. Let us check the criteria of RESC and we will understand why 

RESC failed to fit to the three signals. The objective function of RESC for the correct fit is 

7.0 (for one-step signal), 5.8 (for three-steps signal) and is 4.4 (for six-lines signal). 

However, the objective function of RESC for the estimated parameters is 7.6 for a step, 8.1 

for three steps and 5.3 the six-line signal. In fact, during the searching procedure, the 

RESC estimator consistently maximizes its objective function—histogram power, starting 

with initial fits that have a smaller histogram power, but successively finding fits with 

higher histogram power – proceeding to even higher histogram power than that possessed 

by the true fit. The failures of RANSAC, LMedS and ALKS have a similar nature: for 
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example, the median of residuals of the true fit is 16.8, 29.2 and 97.0 for a step, three steps 

and six lines respectively. However the median of residuals of final result by the LMedS 

method is 16.3, (for a step), 15.5 (for three steps) and 23.4 (for six lines). The problem is 

not with the implementation but with the criterion. 

4.4.1.2 Circle Fitting 

The proposed MDPE is a general method that can be easily applied to fit other kinds of 

models, such as circles, ellipsis, planes, etc. Figure  4.3 shows the ability of the MDPE to fit 

circles under 95% outliers.  Five circles were generated, each with 101 data points and 

σ=0.1. 1500 random outliers were distributed within the range (-75, 75). Thus, for each 

circle, it has 1904 outliers (404 pseudo-outliers plus 1500 random outliers). The MDPE 

method gave more accurate results than LMedS, RESC, and ALKS.  The Hough 

Transform and RANSAC also correctly fit the circles when provided with correct bin size 

(for Hough Transform) and error bound of inliers (for RANSAC). The three methods 

(MDPE, Hough Transform, and RANSAC) fitted three different circles according to their 

own criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.3: One example of fitting circles by the six methods. The data had about 95% 

outliers. 
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4.4.1.3 Time Complexity 

It might be interesting to compare the time complexity between the different methods.  In 

this experiment, we will compare the speed of MDPE, RESC, ALKS, LMedS, and 

RANSAC. We do not consider the Hough Transform, because the speed of Hough 

transform depends on the dimension of parameter space, the range of each parameter, and 

the bin size. It also uses a different framework (voting in parameter space), compared with 

the other five methods (which use sampling techniques). 

In order to make the speed of each method comparable, the same simple random sampling 

technique was used for all five methods. Although some other sampling techniques exist, 

such as guided sampling (Tordoff and Murray 2002) and GA sampling (Roth and Levine 

1991; Yu, Bui et al. 1994), and the speed of each method by adopting  these sampling 

techniques can be improved; we adopted the simple randomly sampling technique because:  

(1) It has been widely used in most robust estimators (such as LMedS, LTS, 

RANSAC, ALKS, MUSE, MINPRAN, etc.).  

(2) It is easy to perform.  

 A Step Three Steps A Roof Six Lines Five Circles 

Percentages of outliers 87% 91% 93% 94% 95% 

Number of Sampling: m 500 1000 1500 2000 3000 

MDPE 7.3 15.1 20.1 28.4 73.4 

RESC 12.6 23.8 35.4 47.3 82.2 

ALKS 6.4 13.7 19.8 26.7 126.8 

LMedS 0.6 1.3 2.0 3.0 14.6 

RANSAC 0.7 1.2 1.6 2.5 14.0 

Table  4.1: The comparison of time complexity for the five methods (all time in seconds). 
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We used the signals above (a step, three steps, a roof, six lines, and five circles) to test 

speed of the five methods. We repeated the experiments on each signal 10 times, and the 

mean time of each method for each signal was recorded. We performed them all in 

complete MATLAB code (programming in C code with optimisation will make the 

methods faster).  

From Table  4.1, we can see that LMedS and RANSAC have similar speed and they are 

faster than MDPE, RESC, and ALKS. MDPE is about 35% faster than RESC. The speed 

of MDPE is close to that of ALKS in line fitting but faster than ALKS in the five-circles 

fitting. ALKS is also faster than RESC in line fitting, but slower than RESC in circle 

fitting. We noted that the time complexity of ALKS, compared with MDPE and RESC, is 

higher in the five-circle signal (2005 data points) than in the line signals (505 data points). 

This is because the ALKS procedure used m p-subsets for each value of k (as 

recommended by Lee and Meer, the number of different k is equal to 19). Thus, when the 

number of data points and sampling times is increased, the increase of time complexity of 

ALKS in sorting the residuals of the data points (mainly) is higher than that of RESC in 

compressing histogram, and that of MDPE in calculating density power. 

4.4.2 Experiment 2 

In the previous experiment, we investigated the characteristics of the six methods to fit 

data with multiple structures. In this experiment, we will explore the abilities of the six 

methods to fit data with clustered outliers. We generated a line (y=x-1) corrupted by 

Gaussian noise with zero mean and standard variance σ1. The line had n data points. 

Among the total 500 data points, α data points were randomly distributed in the range of 

(0, 100.0), and β clustered outliers were added to the signals, possessing a spherical 

bivariate normal distribution with standard variance σ2 and mean (80.0, 30.0). 

(a) γ=100, σ1=1.0; α=200; β=200; σ2=5.0. 

(b) γ=100, σ1=1.0; α=200; β=200; σ2=2.0.  

(c) γ=275, σ1=1.0; α=0; β=225; σ2=1.0. 

(d) γ=275, σ1=5.0; α=0; β=225; σ2=1.0. 
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Figure  4.4: Experiment where the six methods are fitting a line with clustered outliers. The 

standard variance of both clustered outliers and inliers will affect the results of the six 

methods. 

Figure  4.4 shows that both the standard variance of clustered outliers σ2 and the standard 

variance of inliers to the line σ1 will decide the accuracy of the results estimated by the six 

methods. When σ1 is small and σ2 is large, all methods except for LMedS can correctly fit 

the line although a large number of clustered outliers existed in the data (see Figure  4.4 

(a)). The LMedS failed because it cannot tolerate more than 50% outliers. When the 

standard variance of clustered outliers is small, i.e., the outliers are densely clustered 

within a small range; the ability of MDPE, RESC, ALKS, and RANSAC to resist the 

influence of clustered outliers will be greatly reduced (see Figure  4.4 (b)). As shown in 

Figure  4.4 (c) and Figure  4.4 (d), the standard variance of inliers to the line will also affect 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Others 

RESC 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

RESC

Hough

ALKS 

MDPE 

LMedS and RANSAC 



 66

the accuracy of the results by LMedS, MDPE, RESC, ALKS, and RANSAC. When σ1 was 

5.0 (Figure  4.4 (d)), all the five methods failed to fit the line even with only 45% clustered 

outliers. 

The Hough Transform, to our surprise, showed excellent performance to resist clustered 

outliers. It succeeded to fit all the four signals despite clustered outliers. We note that the 

Hough Transform adopts a different framework to the other five methods: it uses a voting 

technique in parameter spaces instead of residual space. It would seem that the objective 

functions of all other methods fail to score the correct solutions highly (for MDPE, RESC, 

and RANSAC) or lowly (for LMedS and ALKS) enough when there are large numbers of 

very highly clustered outliers. This has been noted before with the LMedS (Wang and 

Suter 2003a; also see chapter  3) and is presumably one reason why the proofs of high 

breakdown point specifically stipulates rather generally distributed outliers.    

4.4.3 Experiment 3 

It is important to know the characteristics of the various methods when the signals were 

contaminated by different percentages of outliers. In this experiment, we will draw the 

“breakdown plot” and compare the abilities of the six methods to resist different 

percentages of outliers (in order to avoid crowding, each sub-figure in Figure  4.5 includes 

three methods). We generated step signals (y=Ax+B) as follows:  

Signals: line 1: x:(0-55), A=0, B=30, n1 will be decreased with the increase of uniformly 

distributed outliers α; line 2: x:(55-100), A=0, B=60, n2=25; for both lines: σ=1. 

In total 500 points. 15 clustered outliers centred at (80, 10) with unit variance were added 

to the signals. At the beginning, n1 = 460, α=0, so the first signal had an initial 8% outliers; 

then every repetition of the experiment 5 points were moved from n1 to uniform outliers 

(α) ranging over (0-100) until n1=25. Thus the percentage of outliers in the data points 

changed from 8% to 95%. The whole procedure above was repeated 20 times.   
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As Figure  4.5 illustrated, the LMedS first broke down (at about 50% of outliers) among all 

these six estimators. ALKS broke down even when outliers comprised less than 80%; 

RESC began to break down when outliers comprised more than 88% of the total data.  
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Figure  4.5: Breakdown plot for the six methods: (a1) and (a2) error in A vs. outlier 

percentage; (b1) and (b2) error in B vs. outlier percentage. 

From Figure  4.5, we can also see that, provided with the correct error bound (for 

RANSAC) and with a “good” bin size (for Hough Transform), RANSAC and Hough 

Transform can tolerant more than 50% outliers. RANSAC began to break down at 92% 

outliers; Hough transform began to break down when outliers have more than 88% (broke 

down at 89% or more outliers). However, the performance of RANSAC is largely 

dependent on the correct choice of error tolerance. If the error tolerance deviated from the 

correct error tolerance, RANSAC will completely breakdown (see the experiment in 
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subsection  4.4.4.2). Similarly, the good performance of the Hough Transform is largely 

dependent on the choice of accumulator bin size. If the bin size is wrongly given, Hough 

Transform will also breakdown (this phenomenon was also pointed out by Chen and Meer 

(Chen and Meer 2002)).  

In contrast, MDPE has the highest robustness among the six methods. MDPE began to 

break down only at 94% outliers. However, even at 94% and 95% outliers, MDPE had 

still, loosely speaking, about 75% correct estimation rate out of the 20 times. 

Another thing we noticed is that ALKS has some obvious fluctuations in the results when 

the outliers are less than 30%, while the other five do not have this undesirable 

characteristic. This may be because the robust estimate of the noise variance is not valid 

for small or large k values (k is the optimum value to be determined by the data).  

Among all these six methods, MDPE and RANSAC have similar accuracy. They are more 

accurate than RESC, ALKS, and LMedS. The accuracy of the Hough Transform greatly 

depends on the accumulator bin size in each parameter space. Generally speaking, the 

larger the bin size is, the lower accuracy the Hough Transform may have. Thus, in order to 

obtain higher accuracy, one needs to reduce the bin size. However, this will lead to an 

increase in storage requirements and computational complexity. Also, one can have a bin 

size that is too small (theoretically, each bin receives less votes and in the limit of very 

small bin size, no bin will have more than 1 vote!). 

4.4.4 Experiment 4 

The problem of the choice of window radius in the means shift, i.e., bandwidth selection, 

has been widely investigated during the past decades (Silverman 1986; Wand and Jones 

1995; Comaniciu, Ramesh et al. 2001; Comaniciu and Meer 2002a). Comaniciu and Meer 

(2002a) suggested several techniques for the choice of window radius: 

1. The optimal bandwidth should be the one that minimizes AMISE; 
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2. The choice of the bandwidth can be taken as the center of the largest operating 

range over which the same results are obtained for the same data.  

3. The best bandwidth maximizes a function that expresses the quality of the results. 

4. User provides top-down information to control the kernel bandwidth.   

Next we will investigate the influence of the choice of window radius on the results of 

MDPE.  

4.4.4.1 The Influence of the Window Radius and the Percentage of Outliers on 

MDPE 

 

 

 

 

 

 

 

 

Figure  4.6: The influence of window radius and percentage of outliers on the results of the 

MDPE. 

Although the MDPE has showed its powerful ability to tolerate large percentage of outliers 

(including pseudo-outliers), its success is decided by the correct choice of window radius 

h. If h is chosen too small, it is possible that the densities of data points in the residual 

space may not be correctly estimated (the density function is a noisy function with many 

local peaks and valleys), and some inliers may possibly be neglected; on the other hand, if 

h is set too large, the window will include all the data points including inliers and outliers; 

all peaks and valleys of the density function will also be smoothed out. In order to 

investigate the influence of the choice of window radius h and percentage of outliers on the 

estimated results, we generated a step signal: y=Ax+B, where A=0, B=30 for x:(0-55), 
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n1=100; and A=0, B=70 for x:(55-100), n2=80. . The step was corrupted by Gaussian noise 

with a unit variance. In total, 500 data points were generated.  Uniformly distributed 

outliers in the range (0-100) were added to the signal so that the data respectively included 

50%, 60%, 70% and 80% outliers (including uniformly distributed outliers and pseudo 

outliers). To investigate the effect of window size in MDPE, the window radius h was set 

from 1 to 20 with increasing step by 1 each time. The results were repeated 20 times. 

Figure  4.6 shows that the absolute errors in A and B increase with the window radius h 

(when h is larger than some range) because when the radius becomes larger, it is possible 

that more outliers were included within the converged window. The percentage of outliers 

has influence on the sensitivity of the results to the choice of window radius: when the data 

include a higher percentage of outliers, the results are relatively more sensitive to the 

choice of window radius; in contrast, when there are a less percentage of outliers in the 

data, the results are relatively less sensitive to the choice the window radius.   

4.4.4.2 The Influence of the Choice of Error Tolerance on RANSAC 

We notice that RANSAC has an important parameter—error tolerance (i.e. error bound of 

inliers), the correct choice of which is crucial for the method’s success in model fitting. 

The purpose of error tolerance in RANSAC has some similarity to the window radius h in 

MDPE: they both restrict immediate consideration of the data within some range; MDPE 

uses the densities of the data within the converged window; RANASC uses the number of 

the data within error tolerance. It would be interesting to investigate the sensitivity of the 

results to the choice of the error bounds in RANSAC. We used the same signal as used in 

Figure  4.6 and the results were repeated 20 times. 

As Figure  4.7 show, RANSAC has little robustness to the choice of different error bound. 

When the error bound deviated from the true value (which is assumed as a priori 

knowledge), RANSAC totally broke down. Moreover, the result of RANSAC is very 

sensitive the choice of error bound, regardless of the percentages of outliers that are 

included in the data: even when the data included 50% outliers, RANSAC still broke down 

when the wrong error bound was provided. This is different to the behaviour of MDPE. As 
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shown in Figure  4.6, when the data include 50% of outliers, the results of MDPE showed 

robustness for a large range of h (from1 to 15).  

 

 

 

 

 

 

 

 

Figure  4.7: The influence of the choice of error bound on the results of RANSAC. 

 

4.4.4.3 The Relationship between the Noise Level of Signal and the Choice of 

Window Radius for MDPE 

Next, we will investigate the relationship between the noise level of inliers and the choice 

of window radius. We use the step signal with 70% outliers that is used in Figure  4.6. But 

we change the standard variance of the step signal from 1 to 4, with increment 1.  

Figure  4.8 shows that the results are similar when the noise levels of the step signal are set 

from 1 to 3. However, when the standard variance of the signal is increased to 4, the 

tolerance range to the choice of window radius has an obvious reduction; and the 

fluctuation in the estimated parameters is larger for higher noise level in the signal than 

lower one. In fact, we have noticed that, not surprisingly, when the noise level is too large, 

the accuracy of all methods that are used for comparison is low. The breakdown point of 

these methods will decrease with the increase of noise level of signal. 
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Figure  4.8: The relationship between the noise level of signal and the choice of window 

radius in MDPE. 

 

4.4.5 Experiments on Real Images 
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Figure  4.9: Fitting a line (a) one real pavement; (b) the edge image obtained by using 

Canny operator; (c) the results of line fitting obtained by the six methods. 
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In this experiment, we will provide two real images to show the ability of MDPE to 

tolerate large percentage of outliers.  

The first example is to fit a line in the pavement shown in Figure  4.9. The edge image was 

obtained by using Canny operator with threshold 0.15 and included 2213 data points 

(shown in Figure  4.9 (b)). There were about 85% outliers (most belonging to pseudo-

outliers which had structures and belonged to other lines) in the data. Six methods (MDPE, 

RESC, ALKS, LMedS, RANSAC, and Hough Transform) were applied to fit a line in the 

pavement.  As shown in Figure  4.9 (c), ALKS and LMedS failed to correctly fit a line in 

the pavement; while the other four methods correctly found a line. 
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                 (c) 

Figure  4.10: Fitting a circle edge. (a) twelve cups; (b) the edge image obtained by using 

Canny operator; (c) the results of circle fitting obtained by the six methods.  
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The second example is to fit a circlar edge of one cup out of twelve cups. Among the total 

1959 data points, the inliers corresponding to each cup were less than 10% of the total data 

points. This is another multiple-solution case: the fitted circle can correspond to any cup in 

the twelve cups. As shown in Figure  4.10, MDPE, RANSAC, and Hough Transform all 

correctly found a cup edge (the result of RANSAC was relatively lower in accuracy than 

that of MDPE), but each method found a different circle (Note: as these are not synthetic 

data, we do not have the correct error bound for RANSAC and bin size for Hough 

Transform. We empirically chose the error bound for RANSAC and bin size for Hough 

Transform so that the performance was optimized). However, all other three methods 

(RESC, ALKS, and LMedS), which are closer to MDPE in spirit, failed to fit the circle 

edge of a cup. 

4.5 Conclusion 

In this chapter, we introduced a new and highly robust estimator (MDPE). MDPE is 

similar to many random sampling estimators: we randomly choose several p-subsets, and 

we calculate the residuals for the fit determined by each p-subset. However, the crux of the 

method is that we apply the mean shift procedure to find the local maximum density of 

these residuals. Furthermore, we evaluate a density power measure involving this 

maximum density. The final estimated parameters are those determined by the one p-

subset corresponding to the maximum density power over all of the evaluated p-subsets. 

Our method, and hence our definition of maximum density power, is based on the 

assumption that when a model is correctly fitted, its inliers in residual space should have a 

higher probability density, and the residual at the maximum probability density of inliers 

should have a low absolute value. This captures the dual notions that: the data points 

having lower residuals should be as many as possible, and that the residuals should be as 

small as possible. In that sense, our method combines the essence of two popular 

estimators: Least Median of Squares (low residuals) and RANSAC (maximum number of 

inliers). However, unlike RANSAC, MDPE scores the results by the densities of data 

points falling into the converged window and on the size of residual of the point 

corresponding to local maximum density. Contrast this also with the Least Median of 

Squares, which uses a single statistic (the median). 
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The result of our innovation is a highly robust estimator. The MDPE can tolerate more than 

85% outliers, and has regularly been observed to function well with even more than 90% 

outliers.  

We also compared our method with several traditional (RANSAC, Hough Transform and 

LMedS) and recently provided methods (RESC and ALKS). From our experimental 

analysis, it is hard to say if any method has a clear advantage. LMedS and RANSAC are 

the fastest among the six methods. However, the apparent breakdown point of LMedS is 

lower; and RANSAC needs a priori knowledge of the error bounds. The results of 

RANSAC are very sensitive the choice of error bounds, even when the percentage of 

outliers is low. The Hough Transform shows excellent performance when the data include 

clustered outliers. However, the space requirement and time complexity is high when the 

dimension of parameters is high and high accuracy is required. Among recently proposed 

estimators: MDPE, RESC, and ALKS; MDPE has the highest robustness to outliers. ALKS 

shows less robustness and instability when the percentage of outliers is small. However, it 

is completely data driven. Although RESC needs user to adjust some parameters, it is also 

a highly robust estimator. So, we can see each method has some advantages and 

disadvantages.  

When the percentage of outliers is very large or there are many structures in the data 

(pseudo-outliers), one problem in carrying out all of the methods which use random 

sampling techniques is: the number of p-subsets to be sampled, m, will be huge. 

Fortunately, several other sampling techniques, such as guided sampling (Tordoff and 

Murray 2002) and GA sampling (Roth and Levine 1991; Yu, Bui et al. 1994), appeared 

during recent years. Investigation of sampling techniques is beyond the scope of this thesis 

but should be addressed in future work  

In the latter part of construction of MDPE, the authors became aware of (Chen and Meer 

2002). This work has some similar ideas to our work in that both methods employ a kernel 

density estimation technique. However, their work places emphasis on the projection 

pursuit paradigm and on data fusion. Moreover, they use an M-estimator paradigm (see 

section 2 in the paper). Though there are nice theoretical links between M-estimator 

versions of robust estimators and kernel density estimation, as referred to in that paper, the 
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crucial fact remains that LMedS and RANSAC type methods have a higher breakdown 

point (especially in higher dimension).  

Thus, though their work employs kernel density estimation that is also a key to our own 

approach, the differences are significant:  

(1) The spaces considered are different: in their methods, they considered their mode 

of the density estimate in the projection space along the direction of parameter 

vector. MDPE considers the density distribution of the mode in the residual space.  

(2) The implication of the mode is different: they sought the mode that corresponds to 

the maximum density in the projection space, which maximizes the projection 

index. MDPE considers not only the density distribution of the mode, which is 

assumed having Gaussian-like distribution, in the residual space, but also the size 

of the residual corresponding to the center of the mode.  

(3) They used a variable bandwidth technique that is proportional with the MAD scale 

estimate. However, as Chen and Meer said, MAD may be unreliable when the 

distribution is multi-modal, which may cause problems with the bandwidth 

estimation. We used a fixed bandwidth technique to estimate the density 

distribution. The relationship between the choice of the bandwidth and the results 

of MDPE is investigated in this chapter.  Furthermore, we also employed the 

variable bandwidth technique in the modified version of MDPE (see chapter 6), in 

TSSE (chapter 7) and in ASSC (chapter 8). 

(4) In their method, the computational complexity is greatly increased for higher 

dimensions because the search space is much larger with the increase of the 

dimension of parameter space. Thus, a more efficient search strategy is demanded 

for higher dimension in their method. In our method, like RESC, ALKS, LMedS, 

etc., one-dimensional residual space is analyzed rather than multi-dimensional 

parameter space. The time complexity of MDPE (and RESC, ALKS, LMedS, etc.) 

is related to the randomly sampling times, which will be affected by both the 

dimension of the parameter space and the percentage of outliers.   
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(5) Because their method employed a projection pursuit technique, more supporting 

data points ((Chen and Meer 2002), pp.249) are needed to yield reliable results. 

Thus, they randomly choose the data points in one bin from the upper half of the 

ranking (by the number of points inside each bin) followed by region growing to 

reach more data points. In MDPE, we randomly choose p-subsets from the whole 

data each time, and calculate the parameters by the p-subset and then the residuals 

of all data points by the obtained parameters. 

At this point in time, it is difficult to compare the performance of the two approaches. 

We do not prove that our method has a high breakdown point in a rigorous way. However, 

we must point out that, despite impressions that may be obtained by reading much of the 

literature, particularly that aimed more at the practitioner, more traditionally accepted 

techniques still have their shortcomings in similar ways. For example, though it is often 

cited that Least Median of Squares has a proven breakdown point of 50%, it is often 

overlooked that all practical implementations of Least Median of Squares are an 

approximate form of Least Median of Squares (and thus only have a weaker guarantee of 

robustness).  

Indeed, the robustness of practical versions of Least Median of Squares hinges on the 

robustness of two components (and in two different ways): the robustness of the median 

residual as a measure of quality of fit and the robustness of the random sampling procedure 

to find at least one residual distribution whose median is not greatly affected by outliers. 

Our procedures, like many other procedures, share the second vulnerability as we also rely 

on random sampling techniques.  

The first vulnerability is sometimes disregarded for practical versions of Least Median of 

Squares, because robustness is viewed as being guaranteed by virtue of the proof of 

robustness for the ideal Least Median of Squares.  

However, two comments should be made in this respect. Firstly, that proof relies on 

assumptions regarding the outlier distribution and it can easily be shown that clustered 

outliers will invalidate that proof. Secondly, there is an inherent “gap” between a proof for 
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an ideal procedure and what one can say about an approximation to that procedure. We 

believe that our method of scoring the fits better protects against the vulnerabilities that 

structure in the outliers expose. We have presented empirical evidence to support that.  
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5. A Novel Model-Based Algorithm for Range Image Segmentation 

 

 

 

 

 

 

5.1 Introduction 

Perception of surfaces in images has played a very important role in image understanding 

and three-dimensional object recognition. Because range images contain three-dimensional 

geometric information, the difficulties of recognizing three-dimensional objects in range 

images are greatly reduced. 

Range images are the images that can provide 3D distance information, related to a known 

reference coordinate system, to surface points on the objects (in the images) in a scene. 

Each pixel in a range image contains 3D geometry information. Thus, the value of the 

pixel corresponds to a depth/range measurement (i.e., in the ‘z’ direction); and the 

coordinate of the pixel in 3D can be written as (x, y, z), where (x, y) is the image 

coordinate of the pixel.  

Currently, range images have been widely applied in the fields such as autonomous 

navigation and medical diagnosis.  

1.1.4.  Chapter 5 

A Novel Model-Based Algorithm 
for Range Image Segmentation 
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                               Figure  5.1: The simplified 3D recognition systems 

Although various 3D object recognition systems have been developed in recent years, there 

are common aims in these systems [(Suk and Bhanddarkar 1992), pp.10]: 

•  Robustness of the recognition process. The systems should be able to recognize 

objects with noise, occlusion, and ambiguity. 

•  Generality of representation. The systems should be able to handle different types 

of objects. 

•  Flexibility in control strategy.  

•  Speed and Efficiency. Speed is a critical factor. It will affect whether or not the 

systems can recognize the objects on real time. This factor is especially important 

in robot systems. 

As Figure  5.1 illustrates, we can see that to segment range images is the first step in order 

to extract features and recognize a three dimensional object. Therefore whether or not we 
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can correctly segment the range images is an important factor that affects the recognition 

of a three-dimensional object. 

Image segmentation is to segment the image into some meaningful non-overlapping 

homogeneous regions whose union is the entire image.  If we let R be the whole image, R1, 

R2 ,…, Rn be the segmented regions, then, according to  Gonzalez [(Gonzalez. and Woods. 

1992), pp.458],  segmentation of an image can be described as follows: 

1. RRi
n
i ==1∪  

2. Ri is a connected region for all i=1,2,…,n. 

3. Φ=ji RR ∩  when ji ≠  

4. P(Ri)=TRUE for all i=1,2,….,n 

5. )( ji RRP ∪ =FALSE when ji ≠  

where Φ  is the null set and P(Ri) is the logical judge over the points in the set Ri. 

There has been general agreement on what results an image segmentation system should 

achieve [(Haralick and Shapiro 1992), pp.509]: 

•  The segmented regions of an image should be uniform and homogeneous 

considering some characteristic, e.g., models of the objects in the image. 

•  Region interiors should contain as less holes as possible. 

•  Boundaries of regions should be smooth and accurate. 

It is very difficult to achieve all these properties at the same time by one segmentation 

method. To evaluate the performance of a method for image segmentation, Hoover 

suggested to use following five types of metrics (Hoover, Jean-Baptiste et al. 1996): 
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1. Correct detection. If there are more than T percent of the pixels in the segmented 

region correctly assigned, the region is correctly detected. 

2. Over segmentation. If there are more than T percent of the pixels in a segmented 

region that should be assigned to other regions, the detected region is called over 

segmented. 

3. Under segmentation. If a segmented region contains more than one surface, (which 

should be assigned to different regions,) the detected region is called under 

segmented. 

4. Missing a region. If a region is not contained in any region of correct detection, 

over segmentation, or under segmentation in the segmented image, the region is 

missed. 

5. Noisy region. If a region in the segmented image does not belong to any region of 

correct detection, over segmentation, or under segmentation, it is classified as 

noise. 

where T is a threshold and can be specified by user according to the accuracy requirement 

of a system. 

There are many three-dimensional image segmentation methods published in the literature. 

Generally speaking, these segmentation methods can be classified into two major classes: 

1. Edge-based segmentation techniques (Ghosal and Mehrotra 1994; Wani and 

Batchelor 1994). 

2. Region-based segmentation techniques or clustering techniques (Hoffman and Jain 

1987; Jiang and Bunke 1994; Fitzgibbon, Eggert et al. 1995).  

In edge-based segmentation methods, it is important to correctly extract the 

discontinuities—surface discontinuities (boundaries and jumps) and orientation 

discontinuities (creases and roofs), which will be used to guide the followed segmentation 

process. The main difficulties that edge-based segmentation techniques meet are: 
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•  The effectiveness of these methods will be greatly reduced when range images 

contain noise;   

•  When the edge operator mask size is increased, the computational time will be 

greatly increased. 

•  When the edge pixels detected by edge operator are not continuous (especially in 

noisy image), it will be difficult to link these discontinuous pixels.  

•  Also, the reliability of the crease edge detectors makes edge-based methods 

questionable. 

Region-based techniques have wider popularity than edge-based techniques. The 

essence of region growing techniques is that it segments range images based on the 

similarities of feature vectors corresponding to pixels in range images. The region-based 

techniques first estimate the feature vectors at each pixel, and then aggregate the pixels 

that have similar feature vectors; and at the same time, separate the pixels whose feature 

vectors are dissimilar, to form a segmented region.  

However, region-based methods also have some problems: 

•  They have many parameters to control the processing of the region growing. 

Most of these parameters need to be predetermined. 

•  The choice of initial region greatly affects the performance of most region-based 

methods. When the seeds are placed on a boundary or on a noise corrupted part of 

the image, the results will break down. 

•  The region boundaries are often distorted because of the noise in the range 

images. 

•  In clustering-based methods, to adaptively estimate the actual number of clusters 

in the range image is difficult. 

Another way of classifying a segmentation approach is that which uses the notion of 

model-driven (top-down). The model-driven methods are appealing because it has been 

proved that these methods have similarities to the human cognitive process (Neisser 1967; 
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Gregory 1970). The model-based methods can directly extract the required primitives from 

the unprocessed raw range images. Model-based methods, in particular, robust model 

based approaches, have been attracting more and more attention (Roth and Levine 1990; 

Yu, Bui et al. 1994; Stewart 1995; Miller and Stewart 1996; Lee, Meer et al. 1998). These 

methods are very robust to noisy or occluded data.   

Next, we will review several state-of-the-art methods of segmentation in section 5.2. Then 

we modify the MDPE to produce a quicker version, called QMDPE (Quick-MDPE), and 

evaluate its achievements in section  5.3. In section  5.4, we present a model-based method 

based on the QMDPE for segmentation of rage images. The performance of the proposed 

method is compared to that of several other state-of-the-art range image segmentation 

methods in section  5.5. We conclude in section  5.6. 

5.2 A Review of Several State-of-the-Art Methods for Range 

Image Segmentation 

In this section, four methods (UB, UE, USF, WSU) will be reviewed. The USF (Hoover, 

Jean-Baptiste et al. 1996) and UE (Fitzgibbon, Eggert et al. 1995) algorithms segment 

range images by iteratively growing regions from seed regions. However, the WSU 

(Hoffman and Jain 1987; Flynn and Jain 1991) algorithm employs a clustering technique in 

its segmentation process. The UB (Jiang and Bunke 1994) algorithm is in region growing 

framework, but it is based on straight-line segmentation in scan lines. Next the four 

methods will be reviewed in detail. 

5.2.1 The USF Range Segmentation Algorithm 

The USF algorithm (Hoover, Jean-Baptiste et al. 1996) can be described as follows: 

1. Compute the normal of each range pixel.  

First, a growing operation is carried out in a n-by-n window from the pixel of 

interest. The distances between the pixels (to grow) and their four-connected pixels 
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must be less than a threshold; otherwise, the pixels will be ignored. The normal is 

found by either an Eigen method (Duda and Hart 1973; Goldgof, Huang et al. 

1989) or a method solving a set of nine plane equations. 

2. Choose the seed points.  

The pixel with smallest interior measure, corresponding to the residual error of the 

plane equation fit to the entire n-by-n window,  is chosen as a seed point. 

3. Using the seed point to grow the region.  

       Four criteria for pixels joining the region must be satisfied: 

(a) The point is connected to the region grown so far. 

(b) Angle between normal of pixel and that of region grown so far is less than a 

threshold T1. 

(c) Perpendicular distance between pixel and plane grown so far is within a 

threshold T2. 

(d) Distance of pixel and four-connected neighbor already in the grown region 

is less than a threshold T3. 

The region is recursively grown until no pixel left to join that region.  Then a new region 

begins to grow from the next seed point available. If a region’s final size is less than a 

threshold T4, the region and its pixels are ignored and will be dealt with during the post-

process step. 

5.2.2 The WSU Range Segmentation Algorithm 

The WSU algorithm is first presented by Hoffman and Jain (Hoffman and Jain 1987). 

Flynn and Jain improved the WSU algorithm and applied it to 3D object recognition 

(Flynn and Jain 1991). WSU can be used not only for planar surfaces but also for quadric 

surfaces. The details of the WSU algorithm can be described as follows: 
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1 Labelling the jump edge pixels. The distances (dj, j=1,2,…,8) in z between a range 

pixel and its eight neighbouring pixels are measured. If dj for all eight points is 

greater than a predetermined threshold, the pixel is labelled as a jump edge pixel. 

2 Estimating the surface normal of each range pixel. The surface normal of each 

range pixel is estimated using k-by-k neighbouring points (but not including jump 

edge pixels). A principal component technique (Flynn and Jain 1988) is employed 

to estimate the surface normal because this technique can accommodate data 

contaminated with noise. 

3 Sampling on a regular grid is performed to yield a data set less than 1000 in size. 

The normal information and position information of each sampled data point is 

used to form six vectors. Then a clustering algorithm (Jain and Dubes 1988) is 

employed in the six dimensional space (corresponding to the six vectors). 

4 Assigning the range pixels to clusters. Each range pixel is assigned to the 

corresponding closest cluster center. The connected component algorithm is used to 

avoid assigning the same labels to regions that are not connected. 

5 An edge-based merge step is performed. This step will merge the regions where the 

average angle between the surface normals of range pixels on one side of the edge 

and their neighbours on the other side is less than a predetermined threshold. 

6 A principal component procedure is performed to distinguish planar regions from 

non-planar regions. The non-planar regions will be ignored in further processing. 

7 If regions have similar parameters and are adjacent, they will be merged. 

8 Unlabeled pixels on each segment are merged into the region. 

9 Step 6, 7 and 8 are repeated until the result does not change. 

5.2.3 The UB Range Segmentation Algorithm 

The UB segmentation method was developed based on the observation that if a line is used 

to scan the image, the points that belong to a planar surface will form a straight line 

segment. On the other hand, if the points are on the same straight line segment, they will 
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surely belong to the same planar surface. Unlike other region growing algorithms which 

use seeds to grow the regions, the UB segmenter uses straight line segments as growing 

primitives. This greatly reduces the data dimension to be dealt with in the growing process 

and makes the algorithm very fast. 

The UB algorithm can be described as follows (Jiang and Bunke 1994): 

1. A median filter is employed as a preprocessing step to reduce the noise level of an 

image.  

2. Scan the image by scan line and divide the data on each scan line into straight line 

segments.  

3. Using a link-based data structure, find the neighborhood of each line segment. 

4. Select the best seed region by the following process. First choose a small number of 

neighboring line segments (three in (Jiang and Bunke 1994)) in a seed region. If 

any line segment is shorter than a predetermined threshold, this candidate region is 

discarded. The optimal seed region is the one with the smallest error among the 

errors computed by a least square plane fitting for each candidature. 

5. The growing process is performed. In the UB algorithm, the initial guess is a set of 

line segments. A line segment is added to the region if the perpendicular distance 

between its two end points and the plane of the region is within a threshold. This 

process is continued until no more line segments can be added to this region.  

6. The process of seed region finding (step 4) and region growing (step 5) is iterated 

until no seed region can be found.  

7. A post-processing step is applied to yield clean edges between regions.  

5.2.4 The UE Range Segmentation Algorithm 

The UE algorithm (Fitzgibbon, Eggert et al. 1995) is similar to the USF algorithm. They 

both belong to the class of region growing algorithms. The UE algorithm contains the 

following main steps: 
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1. Normal Calculation.  

A 5-by-5 window is used to estimate the normal of each range pixel. A normal and 

a depth discontinuity are detected using a predetermined normal threshold and 

depth threshold. 

2. A discontinuity preserving smoothing is performed with multiple passes for greater 

smoothing. 

3. H-K based segmentation for initialization.  

The Gaussian (H) and mean (K) curvature of each pixel is estimated. Using the 

combined signs of the pair (H, K), one can judge the surface type of each range 

pixel. Each pixel and its eight-connected pixels of similar labeling are grouped to 

form initial regions. Then dilation and erosion are performed to fill small unknown 

areas and remove small regions. 

4. Region growing. 

A least squares surface fitting procedure is performed in the initial regions obtained 

above. Then each region is in turn grown. To join the region, a point needs to 

satisfy the following requirements: 

(a) The point is eight-connected to the region grown so far. 

(b) The perpendicular distance between the pixel and plane grown so far is 

within a threshold. 

(c) The angle between normal of the pixel and that of region grown so far is 

less than a threshold. 

(d) The point is closer to the current surface than any other possible surfaces it 

may be assigned to. 

(e) The normal of the pixel is in better agreement with the current surface than 

any other possible surface it may be assigned to. 

After expansion, the surface is refitted using these new points. Then a contraction 

of the region boundary is performed. 
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5. Region boundary refinement.  

      A pixel is added to a region during expansion if: 

(a) The point is eight-connected to the region grown so far. 

(b) The point-to-plane distance is less than a threshold.  

(c) The point is on the one side of a decision surface. 

5.2.5 Towards to Model-Based Range Image Segmentation Method 

Although the edge-based methods and region-based methods are popular in the computer 

vision community, it is difficult for these methods to directly extract specified primitives. 

The model-driven (top-down) methods are appealing because they can directly extract the 

required primitives from the unprocessed raw range images. The features that are used in 

model-driven methods are primitives. So the matching takes place very early in the 

recognition process. In the model-based methods, primitive geometric features are matched 

instead of similar features that are used in region-based methods. Then matches are 

checked for local consistency by using some geometric constraints, e.g. distance, normal, 

etc. Because of the introduction of robust statistics into some model-based methods, the 

model-based segmentation methods are very robust to noisy or occluded data.   

Next, we will present an efficient model-based method for range image segmentation.  

5.3 A Quick Version of the MDPE—QMDPE 

As shown in chapter  4, MDPE has a very high robustness and can tolerate a large 

percentage of outliers including gross noise and pseudo-outliers. However, the time needed 

to calculate the densities f̂ (Xi) of all data points within the converged window Wc is large 

when the number of the data points is very large. It takes O(n) time to calculate the density 

f̂ (Xi) at one point Xi. If there are nw data points within the converged window Wc, the 

time complexity of computing the probability density power function ψDP is O(n*nw). In 
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range image processing, nw may be tens of thousands to hundreds of thousands in size. For 

such a huge number of range data points, MDPE is not computationally efficient. A 

quicker version of MDPE with a similar higher breakdown point to outliers is needed for 

range image segmentation. 

In this section, we will modify our MDPE to produce a quicker version, called QMDPE. 

5.3.1 QMDPE 

MDPE measures the entire probability densities of all data points within the converged 

mean shift window. However, QMDPE uses only the density of the point in the center of 

the converged window. QMDPE, like MDPE, also assumes inliers occupy a relative 

majority, with Gaussian-like distribution, of the data points. Thus, when a model to fit is 

correctly estimated, the center of the converged window (Xc) in residual space should be as 

close to zero as possible; and the probability density f̂ (Xc) of the point at Xc should be as 

high as possible. Thus we define the probability density power function, which uses only 

one point’s probability density, as follows: 

                                             ( )
)exp(

)(ˆ

Xc
Xcf

DP

α

ψ =           ( 5.1) 

where α  is a factor that adjusts the relative influence of the probability density to the 

residual of the point corresponding to the center of the converged window. It is empirically 

determined to get the best performance. We adjusted the value of α  by comparing the 

results in both synthetic data and real image data used in section  4.4, and set it to be 2.0 for 

optimal achievement (we note that the empirically best value of α  in equation ( 5.1) for 

QMDPE is different to that in equation ( 4.7) for MDPE, where α  is set to 1.0).  

Because only the probability density on the point corresponding to the center of the 

converged window needs to be calculated, the time cost to compute the probability density 

power in QMDPE is greatly reduced when the number of data is very large (for example, 

range image data). 
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5.3.2 The Breakdown Plot of QMDPE 

Now, we compare the tolerance of QMDPE (to outliers) with that of other estimators 

(including LMedS, ALKS, RESC, RANSAC, Hough Transform, and MDPE) using the 

data in section  4.4.3 (the results of those estimators are shown in Figure  4.5). From Figure 

 5.2 (the experiments were repeated 20 times and results were averaged), we can see that 

the QMDPE began to breakdown when outliers involved more than 92% of the data. 

However, even when outliers occupied more than 92% of the data, QMDPE still acted 

reasonably reliably (about 70%, loosely speaking, correct). The percentage of outliers at 

which the QMDPE began to break down is higher than that of LMedS (51%), ALKS 

(80%), RESC (89%), and Hough Transform (89%) methods; QMDPE and the RANSAC 

have similar performance. However, RANSAC needs a priori knowledge about the error 

bound of inliers; QMDPE needs no prior knowledge about the error bounds. Although its 

robustness to outliers is a little lower than that of MDPE, the QMDPE algorithm is faster 

than MDPE because it saves time in calculating the probability density power for each 

randomly sampled p-subset. 

 

 

 

 

 

 

 

 

 

 

                                 (a)                                                                           (b) 

Figure  5.2:  Breakdown plot for the QMDPE method: (a) error in A vs. outlier percentage;  

(b) error in B vs. outlier percentage. 
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5.3.3 The Time Complexity of QMDPE 

 A Step Three Steps A Roof Six Lines Five Circles 

QMDPE 5.8  12.1  16.6  23.0  61.4  

Table  5.1: The time complexity of QMDPE (in seconds). 

Compared with Table  4.1, Table  5.1 shows the time complexity of QMDPE. We can see 

that QMDPE is slower than LMedS and RANSAC. However, the speed of QMDPE is 

faster than that of MDPE, RESC, and ALKS. QMDPE is about 20% faster than MDPE and 

almost 100% faster than RESC in line fitting.  Of course, the time complexity of these 

methods may change, to some extent, for different types of signal (for example, RESC is 

slower than ALKS in the analysis of the four line signal but faster than ALKS in five circle 

signal; QMDPE is much faster than MDPE in our experiments with range image data). It is 

not practical to compare the time complexity of all methods for all types of signals. The 

above will give the reader some rough idea of the time complexity of each method.  

5.3.4 The Influence of Window Radius on the Results of QMDPE 

 

 

 

 

 

 

 

 

 

Figure  5.3: The influence of window radius on the results of the QMDPE. 
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sensitivity to the choice of window radius h than the results of MDPE (see Figure  4.6). The 

reason is: the window radius h plays two roles in MDPE. First, h is related to the density 

estimation; Second, the density power in MDPE will count all points’ densities within the 

converged window (where h is the radius of the window). However, because we use only 

one point to estimate the density power, h is only used for density estimation in QMDPE.  

5.4 Applying QMDPE to Range Image Segmentation 

A good estimator is generally only one component of a complete scheme to successfully 

tackle meaningful computer vision tasks. Segmentation requires more than a simple-

minded application of an estimator, no matter how good that estimator is. Several 

difficulties faced with applying a statistical estimator to this task must be considered in 

designing a method for segmentation.  

5.4.1 From Estimator to Segmenter 

To test the utility of QMDPE, we apply it to range image segmentation. The range images 

were generated by using an ABW structured light scanner and all ABW range images have 

512x512 pixels. These ABW range images can be obtained from the USF database 

(available at http://marathon.csee.usf.edu/seg-comp/SegComp.html).  

However, segmentation is a (surprisingly) complex task and an estimator cannot simply be 

directly applied without considering the following factors: 

1. The computational cost.  

QMDPE is an improved (in speed) MDPE. Its computational cost is much less than 

MDPE’s computational cost. Even so, for a range image with a large number of 

data points (262,144 data points in our case), employing a hierarchical structure in 

our algorithm greatly optimizes the computational speed.  

2. Handling of intersections of surfaces.  
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When two surfaces intersect, points around the intersection line may possibly be 

assigned to either surface (see Figure  5.5). In fact, the intersection line is on both 

surfaces and the data points are inliers to both surfaces. Additional information 

(such as the normal to the surface at each pixel) should be used to handle data near 

the intersection line. 

3. Handling virtual intersection.  

It is popular in model-based methods to directly estimate parameters of a primitive; 

and classify data points belonging to the primitive according to the estimated 

parameters. The data points on the surface will then be masked out and not be 

processed in later steps. However, sometimes two surfaces do not actually intersect, 

but the extension of one surface is intersected by the other surface. In this case, the 

connected component algorithm (Lumia, Shapiro et al. 1983) should be employed.  

4. Removal of the isolated outliers.  

When all surfaces are estimated, some isolated outliers, due to the noise introduced 

by range image camera, may remain. At this stage, a post processing procedure 

should be made to eliminate the isolated outliers.  

The originators of other novel estimators (e.g. ALKS, RESC, MUSE, MINPRAN) have 

also applied their estimators to range image segmentation, but they have not generally 

tackled all of the above issues. Hence, even those interested in applying ALKS/RESC, or 

any other estimator, to range image segmentation may find several of the components of 

our complete implementation independently useful.  

5.4.2 A New and Efficient Model-Based Algorithm for Range Image Segmentation 

Shadow pixels may occur in an ABW range image. These points cannot give range 

information and thus will not be processed.  

There are four levels in the hierarchy we used in our algorithm. The bottom level of the 

hierarchy contains 64x64 pixels that are obtained by using regular sampling on the original 

image. The top level (i=4) of the hierarchy is the original image (512x512). The level i=2 
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and the level i=3 of the hierarchy have 128x128 and 256x256 pixels respectively. We 

begin with bottom of the hierarchy (i=1), i.e., the 64x64 regular sampled range image. 

 

 

 

 

 

 

 

 

Figure  5.4: The structure of the proposed range image segmentation algorithm 
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Although the QMDPE algorithm was designed to fit the data despite noise and 

multiple structures, it requires that the data points of the model should occupy a 

relative majority of the whole data. This can be satisfied in a lot of range images (and 

the presented algorithm can deal with the whole image as raw image). However, for 

some very complicated range images (those with many objects and surfaces), this 

requirement is not always satisfied. Using the information provided by the jump edge 

will help to coarsely segment the range image to some small regions (each may 

include several planes). 

3. Employ a hierarchal sampling technique.  

The proposed algorithm employs a hierarchal structure based on the fact that when an 

image is regularly sampled, the main details will remain while some minor details 

may be lost.   

4. Apply the QMDPE to obtain the parameters of the estimated primitive. 

For the current level in the hierarchy, we use the whole sampled image as the data to 

deal with. We apply the QMDPE algorithm to that data which yields the plane 

parameters. The inliers corresponding to the estimated plane parameters are then 

identified by employing an auxiliary scale estimator. (For historical reason, we 

employed a revised Median scale estimator: βα +
−

+= )()
3

51( 2
ii

rmed
n

s , where α  

and β  were experimentally set as 1.8 and 0.2 for optimum. However, an improved 

robust scale estimator TSSE (see chapter  7), can be used to estimate the scale of 

inliers).   

At this stage, it is difficult to tell which plane, of any two intersecting planes, the data 

that are on or near the intersection line belong to.  Note: this case is not considered in 

the popular range image segmentation methods employing robust estimators such as 

RESC, MUSE and ALKS. We handle this case in the next step. 

5. Using normal information.  

When the angle between the normal of the data point that has been classified as an 

inlier, and the estimated plane normal, is less than a threshold value (T-angle, 40 

degree in our case), the data point is accepted for step 5. Otherwise, the data point is 
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rejected and is classified as a “left-over point” for further processing. As shown in 

Figure  5.5, when we did not consider the normal information, the range image was 

over segmented because of the intersection of two planes (pointed out by the arrow in 

Figure  5.5 (b) and (c)).  As comparison, we obtain the right result when we 

considered the normal information (see Figure  5.5 (d) and (e)). 

6. Using the connected component algorithm to extract the maximum connected 

component and label them.  

The remaining unlabeled inliers will be used in the next loop for further processing. 

7. Select the connected component for processing in the next loop. 

For all unlabeled data points, we use jump edge information and connected 

component analysis to extract the component with the maximum number of the 

connected data points for the next loop. When the number of the data points 

belonging to the maximum connected component is larger than a threshold (T-cc), we 

repeat step 4-6. Otherwise, we stop this hierarchy and go to the next higher level in 

the hierarchy until the top of the hierarchy (512-by-512).  

8. Finally, we eliminate the isolated outliers and assign them to the majority of their 

eight-connected neighbors.  

Compared with current popular methods (region-based and edge-based methods), our 

proposed method is a model-based top-down technique. Our method directly extracts the 

required primitives from the raw images, and it deals with the whole image as raw image. 

Our method is very robust to noisy or occluded data due to the adoption of robust estimator 

QMDPE. Because we adopt hierarchical technique, this makes the proposed method 

computationally efficient and makes it possible to deal with large size range images with 

only small extra computational cost. 
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                        (a)                                              (b)                                            (c) 

 

 

 

 

 

 

 

                         (d)                                            (e)                                              (f) 

Figure  5.5: A comparison of using normal information or not using normal information. (a) 

Range image (ABW test.10 from the USF database); (b) The segmentation result without 

using normal information; (c) The points near or on the intersection of two planes may be 

classified to both planes without considering normal information; (d, e) The result using 

normal information; (f) The ground truth result. 

5.5 Experiments in Range Image Segmentation 

In this section, we will show how to use our method to segment range images. Since one 

main advantage of our method, over the traditional methods, is that it can resist the 

influence of noise, we put some randomly distributed noise into the range images (Note, as 

the whole image is dealt with at the beginning of the segmentation, there is also a high 

percentage of pseudo-outliers existing in the data).  
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                               (c)        (d) 

Figure  5.6: Segmentation of ABW range image (test.28) from the USF database. (a) Range 

image with 15% random noise; (b) Segmentation result by the proposed method; (c) The 

edge image of the result by the proposed method; (d) The edge image of the ground truth 

result.  
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                               (c)        (d) 

Figure  5.7: Segmentation of ABW range image (test.27) from the USF database. (a) Range 

image with 15% random noise; (b) Segmentation result by the proposed method; (c) The 

edge image of the result by the proposed method; (d) The edge image of the ground truth 

result. 
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                                   (a)                                                    (b)      

 

   

 

 

 

 

 

 

 

 

 

                                    (c)                                                                   (d)  

Figure  5.8: Segmentation of ABW range image (test.13) from the USF database. (a) Range 

image with 15% random noise; (b) Segmentation result by the proposed method; (c) The 

edge image of the result by the proposed method; (d) The edge image of the ground truth 

result.  
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In Figure  5.6, Figure  5.7, and Figure  5.8 (a), we add 15% randomly distributed noise, i.e. 

39322 noisy points were added to each range image taken from the USF ABW range 

image database (test28, test27, and test13). As shown Figure  5.6, Figure  5.7, and Figure 

 5.8 (b) and (c), our method can resist the influence of large number of noise corrupted 

points. The main surfaces were recovered by our proposed method. Only a slight distortion 

appeared on some boundaries of neighbouring surfaces. In fact, the accuracy of the range 

data, and the accuracy of normal at each range point, will have an effect on the distortion.  

It is important to compare the results of our method with the results of other methods. We 

also compare our results with those of the three state-of-art range image segmenters (i.e. 

the USF, WSU and UB, see (Hoover, Jean-Baptiste et al. 1996)). 
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         (d)              (e)     (f) 

Figure  5.9: Comparison of the segmentation results for ABW range image (test.1) from the 

USF database.  (a) Range image; (b) The result of ground truth; (c) The result by the USF;  

(d) The result by the WSU; (e) The result by the UB;  (f) The result by the proposed 

method. 
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Consider Figure  5.9 and Figure  5.10: (a) is the range image and (b) is the edge map of the 

manually made ground truth segmentation result. The results obtained by all methods 

should be compared with the ground truth. (c) is the results obtained by the USF. From 

Figure  5.9 (c) and Figure  5.10 (c), we can see the USF’s results contained many noisy 

points. In both Figure  5.9 (d) and Figure  5.10 (d), the WSU segmenter missed surfaces. 

The WSU segmenter also under segmented the surface in Figure  5.10 (d).  From Figure  5.9 

(e) and Figure  5.10 (e), we can see the boundaries on the junction of surfaces were 

distorted relatively seriously. Our results are shown in Figure  5.9 (f) and Figure  5.10 (f). 

Compared with other methods, the proposed method performed best. Our method directly 

extracted the planar primitives. In the proposed method, the parameters requiring tuning 

are less in number than other traditional methods.   
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         (d)             (e)     (f) 

Figure  5.10: Comparison of the segmentation results for ABW range image (train 6) from 

the USF database.  (a) Range image; (b) The result of ground truth; (c) The result by the 

USF;  (d) The result by the WSU; (e) The result by the UB;  (f) The result by the proposed 

method.  
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As stated before, adopting hierarchical sampling technique in the proposed method greatly 

reduces its time cost. The processing time of the method is affected to a relatively large 

extent by the number of surfaces in the range images. The processing time for a range 

image including simple objects is faster than that for a range image including complicated 

objects. Generally speaking, it takes about 40 seconds (on an AMD800MHz personal 

computer programmed (un-optimized) in the C language) for segmenting a range image 

with less surfaces and about 80-100 seconds for a range image including more surfaces. 

This includes the time for computing normal information at each range pixel (which takes 

about 12 seconds). 

5.6 Conclusion 

In this chapter, we developed a quicker version of MDPE called QMDPE. The advantage 

of QMDPE is that only the probability density corresponding to the center of the 

converged mean shift window needs to be calculated; therefore the time cost to compute 

the probability density power is greatly reduced.  Although QMDPE has a relatively lower 

tolerance to outliers than MDPE, QMDPE still has a better tolerance than most available 

estimators (such as M-estimators, LMedS, LTS, RANSAC, ALKS, and RESC). We 

recommend that when the number of data points are small (say less than 5000 points) and 

the task has a high reliance on the robustness of the estimator, MDPE is an ideal choice. 

On the other hand, when the task involves a large number of data points (for example, 

range image segmentation which often involves more than tens of thousands of data), and 

the speed is a relatively important factor to consider, it is better to choose QMDPE rather 

than MDPE. 

The second contribution of this chapter is that we apply the new QMDPE to the computer 

vision task of segmenting range data. This part is more than a mere application of the 

estimator in a straightforward manner. There are a number of issues that need to be 

addressed when applying an estimator (any estimator) to such a problem. The solutions we 

have found, to these practical problems that arise in the segmentation task, should be of 

independent interest. The resulting combination of a highly robust estimator and a very 
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careful application of that estimator, produces a very effective method for range 

segmentation. 

Experimental comparisons of the proposed approach, and several other state-of-the-art 

methods, support the claim that the proposed method is more robust to outliers and can 

achieve good results even when the range images are contaminated by a large number of 

(impulse) noisy data points.  

In (Roth and Levine 1990), the authors also employed a robust estimator—LMedS to 

segment range image. They firstly found the largest connected region bounded by edge 

pixels; then they used LMedS to fit the geometric primitive in the chosen region. They 

assumed the largest connected region contained only one geometric primitive. However, if 

the region includes more than two geometric primitives (for complicated range images), 

and each geometric primitive has less than 50% data in the region, the estimated primitive 

will be wrong because LMedS has only up to 0.5 breakdown point.    

The algorithm proposed in this chapter is a model-based method and can directly extract 

planar primitives from the raw images. Because QMDPE is very robust to noise, the 

algorithm has the advantage that it can resist the influence of a large amount of random 

noise in the range image. Also, the proposed algorithm is robust to the presence of multiple 

structures. Since we sequentially removed the detected surfaces one by one, the average 

time to segment the range image will be affected by how many surfaces the range image 

includes. However, the computing time will not be greatly affected by the size of the range 

image as we use a sampling hierarchical technique. 
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6.  Variable-Bandwidth QMDPE for Robust Optical Flow Calculation 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Introduction 

One major task of computer vision is to compute the optical flow from image sequences 

(Horn and Schunck 1981; Nagel 1987; Fleet and Jepson 1990; Barron, Fleet et al. 1994; 

Black 1994; Black and Jepson 1996; Lai and Vemuri 1998; Memin and Perez 1998; Ong 

and Spann 1999; Farneback. 2000; Farneback 2001; Memin and Perez 2002). Accurate 

computation of optical flow is an important foundation for tasks, such as motion 

segmentation, extracting structure from motion, etc. Traditional methods of computing 

optical flow are non-robust. Which means that they will fail to correctly compute optical 

flow when the two assumptions: data conservation and spatial coherence, are violated. 

Clearly, these assumptions will be violated near motion boundaries, and when shadows, 

occlusions, and/or transparent motions are present.  

During the last ten years, robust techniques, such as: M-estimators (Black and Anandan 

1993; Black and Anandan 1996), Least Median Squares (LMedS) estimator (Bab-

Hadiashar and Suter 1998; Ong and Spann 1999), Least Trimmed Squares (LTS) 

estimators (Ming and Haralick 2000), and robust Total Least Squares (TLS) estimator 
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(Bab-Hadiashar and Suter 1998) etc., have been employed to extract optical flow. Because 

these robust estimators can tolerate the influence of “bad” data, i.e. outliers, they usually 

obtain better results. Unfortunately, these robust estimators have a breakdown point no 

more than 50%. This means that when the data contain more than 50% outliers, these 

estimators will totally breakdown. Such may happen, for example, near motion boundary. 

In this chapter, we will provide, based on our previous work [see (Wang and Suter 2002a; 

Wang and Suter 2003b); also see chapter  4 and  5], a robust estimator—variable bandwidth 

QMDPE (vbQMDPE). Some others may prefer the term Adaptive-Bandwidth QMDPE—

abQMDPE. Instead of using a fixed bandwidth as in QMDPE, vbQMDPE uses data-driven 

bandwidth selection. We apply the novel proposed vbQMDPE to the task of optical flow 

computation. We also correct the results of Bab-Hadiashar and Suter (Bab-Hadiashar and 

Suter 1998) for the Otte image sequence.  

vbQMDPE is very robust if the percentage of outliers is less than 80%, outperforming 

most other methods in optical flow computation. Of course, any method can breakdown 

under extreme data: even LMedS and LTS can breakdown when clustered outliers are 

present - despite those outliers constituting less than 50% of the whole data (e.g., see 

section  4.4.2). 

6.2 Optical Flow Computation  

Let I(x, y, t) be the luminance of a pixel at position (x, y) and time t, and v = (u, v) be the 

optical flow. The data conservation assumption implies (Fennema and Thompson 1979):  

 I(x, y, t)) = I(x + uδt, y + vδt, t + δt)                                       ( 6.1) 

First order expansion yields the optical flow constraint (OFC) equation:  
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where (∂I/∂x, ∂I/∂y, and ∂I/∂t) are partial derivatives of luminance I with respect to space 

and time at point (x, y, t)).  



 108

The residual at (x, y) can be written as: 
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The error measure using the least squares (LS) within the small local neighbourhood R can 

be written as: 

∑
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From equation ( 6.2), we can see there is only one equation but with two variables to 

estimate - the aperture problem. In order to constrain the solution, the local region R should 

be as large as possible. However, if R is too large, the spatial coherence assumption will be 

violated - the generalized aperture problem (Black and Anandan 1996). The affine motion 

model of image flow is sometimes used in preference to the constant flow model: 
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                                              ( 6.5) 

Traditional (Least Squares) methods estimate the optical flow by minimizing the error 

measure in equation ( 6.4), assuming a flow model such as ( 6.5). 

6.3 From QMDPE to vbQMDPE  

In chapter  4 and  5, we proposed a robust estimator MDPE and its modification QMDPE 

which can both tolerate more than 50% outliers. However, these two robust estimators use 

a fixed bandwidth technique and thus they require the user to specify the bandwidth h for 

the kernel density estimation. In practical tasks, it will be attractive if the bandwidth can be 

data-driven.  

Next, we will, based on QMDPE, provide a variable bandwidth QMDPE, called 

vbQMDPE.  



 109

6.3.1 Bandwidth Choice 

One crucial issue in the non-parametric density estimation, and the mean shift method, is 

how to choose h (Wand and Jones 1995; Comaniciu, Ramesh et al. 2001; Comaniciu and 

Meer 2002a). We employ a method in (Wand and Jones 1995): 
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=                                                 ( 6.6) 

where         and            . , s is the sample standard deviation.   
 

A robust median scale estimator is then given by (Rousseeuw and Leroy 1987): 

                          s = 1.4826medixi                                     ( 6.7) 

ĥ  will provide a upwards bound on the AMISE (asymptotic mean integrate error) optimal 

bandwidth AMISEĥ , thus we choose the bandwidth as c ĥ , c is a constant number (0<c<1) 

and is used to avoid over-smoothing (we are also aware that  if the value of the bandwidth 

is too small, it will introduce artefacts).  

The median scale estimator in equation ( 6.7) may be biased for non-symmetrical multi-

model data and for data with more than 50% outliers. However, the influence of the 

bandwidth h on the final result is relatively weak as it is only used in the pdf estimation 

and the mean shift method.  

6.3.2 The Algorithm of the Variable Bandwidth QMDPE 

The vbQMDPE  procedure can be written as follows: 

1 Randomly choose one p-subset, estimate the model parameters by the p-subset, and 

calculate the residuals of all data points. 

2 Adaptively choose the bandwidth h using the method described in section  6.3.1.  
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3 Apply the mean shift iteration in the residual space with initial window center zero. 

Thus, we obtain the center of the converged window Xc. 

4 Calculate the probability density f̂  at the position Xc by equation ( 4.1) and ( 4.2). 

5 Calculate the density power according to equation ( 5.1).  

6 Repeat step (1) to step (5) many times. Finally, output the parameters with 

maximum density power.  

 “Variable bandwidth” means that the bandwidth h is variable for each randomly chosen p-

subset - instead of using a fixed bandwidth as in our previous work (Wang and Suter 

2002a; Wang and Suter 2003b). In order to improve the statistical efficiency, a weighted 

least square procedure (Rousseeuw and Leroy 1987) can be carried out as the final step. 

6.3.3 Performance of vbQMDPE 

 

 

 

                      (a)      (b) 

 

 

 

               (c)      (d) 

Figure  6.1: Comparing the performance of vbQMDPE, LS, LMedS, and LTS with (a) 

55%; (b) 80%; (c) 70%; (d) 85% outliers. 
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We demonstrate that vbQMDPE is very robust to outliers by comparing it to several other 

traditional methods (the LS, LMedS and LTS methods, which are frequently employed in 

optical flow calculation). 

First, we take a simple setting — line fitting. We generated four kinds of data (one step, 

two steps, two crossed lines, and four lines), each with a total of 500 data points. The 

signals were corrupted by Gaussian noise with zero mean and unit standard variance. 

Among the 500 data points, α data points were randomly distributed in the range of (0, 

100). The i'th structure has ni data points.  

The four signals are as follows:  

•  One step: x:(0-55), y=30, n1=225; x:(55-100), y=40, n2=225; α=50. 

•  Two steps: x:(0-30), y=20, n1=100; x:(30-55), y=40, n2=100; x:(55-80), y=60, 

n3=100; α=200. 

•  Two crossed lines: x:(20-70), y=x+10, n1=150; x:(35-85), y=115-x, n2=150; α=200. 

•  Four lines: x:(0-25), y=3x+10, n1=75; x:(25-55), y=130-2x, n2=20; x:(40-65), y=3x-

110, n3=75; x:(65-90), y=280-3x, n4=75; α=370. 

From Figure  6.1, we can see that LS is non-robust, and that LMedS and LTS failed to fit 

all the four signals. Only vbQMDPE correctly fitted all the four signals - not even breaking 

down when the data includes 85% outliers (Figure  6.1 (d)).  

6.4 vbQMDPE and Optical Flow Calculation 

The optical flow constraint (OFC) is a linear equation in u-v space. Each pixel gives rise to 

one such linear constraint and, in a noise-free setting, and assuming constant u and v, all 

lines intersect at a common point.   
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Two main difficulties in optical flow estimation are (Nesi, Del Bimbo et al. 1995):  

•  The discontinuities in the local velocity;  

•  The “aperture” problem.  
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Figure  6.2: One example of multiple motions. 

The first difficulty is related to occlusions between image illumination discontinuities, 

moving objects or moving object boundaries. One solution to the second difficulty is to 

enlarge the local window so as to collect more constraint equations to over determine the 

optical flow; this will bring higher statistical efficiency. However, enlarging the window 
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means more chance of including multiple motions (forming multiple clusters of 

intersecting lines e.g., Figure  6.2). Because traditional estimators (M-estimators, LMedS, 

LTS, etc.) have only up to 50% breakdown point, they may fail to compute optical flow 

when the data include multiple motion structures (i.e. the outliers occupy more than 50% 

of the data). In such cases, vbQMDPE performs well. 

We generated an image sequence with two moving squares using the method similar to that 

in (Barron, Fleet et al. 1994). Figure  6.2 (a) shows one snapshot of the image sequence. 

The correct optical flow is shown in Figure  6.2 (b). The small window centered at (110, 

136) in Figure  6.2 (a) includes three motions: each motion involves less than 50% data 

points. Its OFC plot, using symbolically determined derivatives of the image intensities I, 

is shown in Figure  6.2 (c). From Figure  6.2 (c), we can see that there are three motions 

included in the small window in Figure  6.2 (a). The optical flow of each motion (2.0, 1.0), 

(-3.0, 1.5), (3.0, -1.5) is marked by a red-plus sign. The proposed robust estimator gives the 

correct optical flow estimation (3.0, -1.5). However, by the LMedS method, the estimated 

optical flow is (2.36, -0.71); and the estimated optical flow by the least trimmed squares 

and the least squares method is respectively (2.71, -1.43) and (0.06, 0.84). 

6.4.1 Variable-Bandwidth-QMDPE Optical Flow Computation  

The first step to compute optical flow is to estimate the spatio-temporal derivatives of the 

image brightness. We follow Bab-Hadiashar and Suter (Bab-Hadiashar and Suter 1998), 

and Nagel (Nagel 1995), by convolving the image brightness with derivatives of 3D spatio-

temporal Gaussian function:       

( )
T 11 x x

2
3/ 2

1(x)
2

G e
π

−− Σ
=

Σ
                                               ( 6.8) 

where x =(x, y, t)T
; Σ is the covariance matrix.  

There are methods to estimate the derivatives near the discontinuities of optical flow (e.g., 

(Ye and Haralick 2000)). In our simple approach, we first estimate the derivatives of I with 

initial standard variance σ0. Then, when the estimated derivatives (Ix, Iy, and It) are larger 
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than a threshold, we simply re-compute the derivatives with half of the standard variance 

in that corresponding direction. 

For each NxN patch of the image and chosen motion model (in our case, constant motion 

model and affine motion model), we solve for the flow using the vbQMDPE. The measure 

of reliability in (Bab-Hadiashar and Suter 1998) can be employed in our method.     

6.4.2 Quantitative Error Measures for Optical Flow 

When the “ground truth” optical flow of image sequences is known, the error analysis is 

performed by Barron’s method (Barron, Fleet et al. 1994). The angular error measure is 

reported in degree: 

                E = arcos(ve , vc)                                                ( 6.9) 

where ve= 1/)1,,( 22 ++ vuvu T  and vc is the true motion vector. The average and standard 

deviation of the errors are both reported.   

6.5  Experimental Results on Optical Flow Calculation 

The proposed algorithm has been evaluated on both synthetic and real images. Three well-

known image sequences (the Diverging Tree sequence (which is obtained from 

ftp://csd.uwo.ca/pub/vision); the Yosemite sequence (which is obtained from 

ftp://csd.uwo.ca/pub/vision); and the Otte image sequence (which is obtained from   

http://i21www.ira.uka.de/image_sequences/)) are used (see Figure  6.3). Table  6.1 shows 

the comparison results the Diverging Tree sequence (Figure  6.3 (a)) – showing the 

proposed method gives the most accurate results for affine motion model. Even for the 

constant motion model, vbQMDPE still yields better results than most other comparative 

methods. 

Figure  6.3 (b) shows one snapshot of the Yosemite sequence. Because the true motion of 

the clouds does not really reflect the image brightness changes, we exclude the clouds in 

our experiments.  From Table  6.2, we can see that the proposed algorithm and Farneback’s 
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algorithms give the best overall results. The standard variance error of our results is less 

than that of Farneback’s results (Farneback. 2000; Farneback 2001) for both constant and 

affine motion models. Although the averaged angle error of Farneback’s results (Farneback. 

2000) is better than our results for constant motion model, our results for affine motion 

model with larger local window outperform those results. However, the average angle error 

of Farneback’s later version (Farneback 2001), which used an affine motion model and a 

combined a region growing segmentation algorithm, is better than ours. To our knowledge, 

it is the best result obtained so far in the field of optical flow computation for the Yosemite 

sequence. 

 

 

 

 

 

 

 

 

 

                                (a)                                 (b) 

 

 

 

 

 

 

 

 

 

 

                                             (c) 

Figure  6.3: The snapshot of the three image sequences: (a) the Diverging Tree; (b) the 

Yosemite; and (c) the Otte sequence. 
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We also note that our results with affine motion model are better than those with constant 

motion model in both the Diverging Tree and the Yosemite. This is because the motion in 

these two sequences is mostly diverging. For each pixel within a small local window, the 

optical flow changes. Thus, the affine motion model reflects the true situation better than 

the constant model.  

The Otte sequence (Figure  6.3 (c)) is a real image sequence (Otte and Nagel 1995) and it is 

difficult because it includes many sharp discontinuities in both motion and depth. When we 

recomputed the optical flow for Otte image sequence (frame 35) by Bab-Hadiashar and 

Suter’s code, we found that the results in (Bab-Hadiashar and Suter 1998) were wrongly 

reported (our results show an improved performance!). From Table  6.3, we can see our 

vbQMDPE outperforms all other published benchmarks    

6.6 Conclusion 

We have developed a novel robust estimator—variable bandwidth QMDPE, and we 

applied it to optical flow computation. By employing nonparametric density estimation and 

density gradient estimation techniques in parametric model estimation, the proposed 

method is very robust to outliers and is a substantial improvement over traditional 

methods. We expect we can do even better with a multi-resolution version of our approach. 

Our code without optimization takes about 6 min on Yosemite image sequence on a 

1.2GHz AMD personal computer, using 17x17 patches around each pixel and m is set to 

30. The speed can be improved for less m and smaller patches but with worse accuracy. 

The mean number of mean shift iterations is about 3 for each p-subset.    



 117

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  6.1: Comparative results on diverging tree: the first part of the table is the results 

reported by Barron et. al (1994) and Ong et. al (1999); the second part is the results 

obtained by the proposed algorithm (number 2 and 6 represent constant and affine motion 

models). 

 

  

 

 

 

 

 

 

 

 

Technique 
Avg. error 

(degree) 

Std. dev. 

(degree) 

Density 

( % ) 

Horn and Schunck (original unthresholded)  

Horn and Schunck (modified unthresholded)  

Uras et.al. (unthresholded) 

Nagel 

Anandan 

Singh (Step 1 unthresholded) 

Singh (Step 2 unthresholded)  

Least-Squares (block-based) method (in Ong  

and Spann, 1999) 

12.02 

2.55 

4.64 

2.94 

7.64 

17.66 

8.60 

 

1.98 

11.72 

3.67 

3.48 

3.23 

4.96 

14.25 

4.78 

 

2.81 

100 

100 

100 

100 

100 

100 

100 

 

100 

vbQMDPE2 (σ0=1.5, 11x11, m=30) 

vbQMDPE6 (σ0=1.5, 11x11, m=30) 

2.51 

1.46 

1.62 

1.03 

100 

100 
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Table  6.2: Comparative results on Yosemite (cloud region excluded): the first part is the 

results reported in the recently referenced literature; the second part is our results. 

 

 

 

 

 

 

Technique 
Avg. error 

(degree) 

Std. dev. 

(degree) 

Density 

( % ) 

Black (1994)  

Szeliski and Coughlan (1994) 

Black and Anandan (1996)  

Black and Jepson (1996) 

Ju et. al. (1996)  

Memin and Perez (1998) 

Memin and Perez (2002) 

Lai and Vemuri(1998) 

Bab-Hadiashar and Suter (WTLS2, 1998) 

Bab-Hadiashar and Suter (WTLS6, 1998) 

Farneback2 (2000) 

Farneback6 (2000) 

Farneback6 (2001) 

3.52 

2.45 

4.46 

2.29 

2.16 

2.34 

1.58 

1.99 

2.56 

1.97 

1.94 

1.40 

1.14 

3.25 

3.05 

4.21 

2.25 

2.00 

1.45 

1.21 

1.41 

2.34 

1.96 

2.31 

2.57 

2.14 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

vbQMDPE2 (σ0=2.0, 17x17, m=30) 

vbQMDPE6 (σ0=2.0, 17x17, m=30) 

vbQMDPE2 (σ0=2.0, 25x25, m=30) 

vbQMDPE6 (σ0=2.0, 25x25, m=30) 

2.12 

1.54 

2.27 

1.34 

2.08 

1.99 

2.07 

1.69 

100 

100 

100 

100 
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Table  6.3: Comparative results on Otte image sequences: the first part was reported by 

Bab-Hadiashar and Suter (1998); the second part is the corrected results; the third part is 

obtained by running the proposed algorithm. 

Technique 
Avg. error 

(degree)

Std. dev. 

 (degree) 

Density 

( % ) 

Giachetti and Torre (1996) 

Bab-Hadiashar and Suter (WLS2, 1998) 

Bab-Hadiashar and Suter (WLS6, 1998) 

Bab-Hadiashar and Suter (WTLS2, 1998) 

Bab-Hadiashar and Suter (WTLS6, 1998) 

5.33 

3.39 

3.51 

3.74 

3.67 

----- 

6.55 

6.48 

8.09 

7.37 

100 

100 

100 

100 

100 

Bab-Hadiashar and Suter (WLS2, corrected) 

Bab-Hadiashar and Suter (WLS6, corrected) 

Bab-Hadiashar and Suter (WTLS2, corrected) 

Bab-Hadiashar and Suter (WTLS6, corrected) 

3.02 

3.14 

3.20 

3.20 

5.98 

5.84 

7.02 

6.59 

100 

100 

100 

100 

vbQMDPE2 (σ0=2.0, 17x17, m=30) 

vbQMDPE6 (σ0=2.0, 17x17, m=30) 

vbQMDPE2 (σ0=2.0, 25x25, m=30) 

vbQMDPE6 (σ0=2.0, 25x25, m=30) 

2.64 

2.82 

2.21 

2.29 

4.98 

5.03 

4.16 

4.06 

100 

100 

100 

100 



 120

7. A Highly Robust Scale Estimator for Heavily Contaminated Data 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

It is not enough to (only) correctly estimate the parameters of a model to differentiate 

inliers from outliers; It is also important to robustly estimate the scale of inliers. In this 

chapter, we propose a new robust scale estimation technique: robust Two-Step Scale 

estimator (TSSE). The TSSE applies nonparametric density estimation and density 

gradient estimation techniques, to robustly estimate the scale of inliers for heavily 

contaminated data. The TSSE can tolerate more than 80% outliers and comparative 

experiments show its advantages over five other robust scale estimators: the median, the 

median absolute deviation (MAD), Modified Selective Statistical Estimator (MSSE), 

Residual Consensus (RESC), and Adaptive Least Kth order Squares (ALKS).   

7.1 Introduction 

As emphasized in chapter  2, in computer vision tasks, it frequently happens that gross 

noise and pseudo outliers occupy the absolute majority of the data. Most past work aimed 

at presenting robust estimators with high breakdown point (Rousseeuw 1984; Yu, Bui et al. 

1994; Stewart 1995; Miller and Stewart 1996; Lee, Meer et al. 1998), i.e. the estimator can 
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correctly find the parameters of a model from the data which are heavily contaminated. 

However, correctly estimating the parameters of a model is not enough to differentiate 

inliers from outliers. Having a correct scale of inliers is crucial to the robust behaviour of 

an estimator. The success of some robust estimators is based on having correct initial scale 

estimate, or the correct setting of a particular parameter that is related to scale (e.g., 

RANSAC, Hough Transform, M-estimators etc.). Thus, their performance crucially 

depends on that user-provided scale-related knowledge. Robust scale estimation is often 

attempted during a post-processing stage of robust estimators (such as LMedS, LTS, etc.). 

Yet, although there are a lot of papers that propose robust estimators with high breakdown 

point for model fitting, robust scale estimation is relatively neglected. 

In this chapter, we investigate the behaviour of several robust scale estimators that are 

widely used in computer vision community and show the problems of these scale 

estimation techniques. We also propose a new robust scale estimator: Two-Step Scale 

estimator (TSSE), based on the nonparametric density estimation and density gradient 

estimation techniques. TSSE can tolerate more than 80% outliers and outperform the five 

comparative scale estimators (The Median, MAD, ALKS, RESC, MSSE scale estimators).   

This chapter is organized as follows: in section  7.2, we review previous robust scale 

techniques. In section  7.3, we propose a simple but efficient mean shift valley algorithm, 

by which the local valley can be found and propose the novel robust scale estimator: TSSE. 

TSSE is experimentally compared with five other robust scale estimators, using data with 

multiple structures, in section  7.4. We conclude in section  7.5. 

7.2 Robust Scale Estimators 

The emphasis in many past computer vision papers presenting robust estimators was on the 

high breakdown point (Rousseeuw 1984; Rousseeuw and Leroy 1987; Yu, Bui et al. 1994; 

Stewart 1995; Miller and Stewart 1996; Lee, Meer et al. 1998; Wang and Suter 2003b), i.e. 

the estimator that can correctly find the parameters of a model from the data which are 

heavily contaminated. Whether or not the inliers can be successfully differentiated from 

the outliers depends on two factors:  
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(1) Whether the parameters of a model are correctly found; and  

(2) Whether the scale of inliers is correctly estimated.  

Step (2), scale estimation plays an important role in the overall robust behaviour of these 

methods. Some robust estimators, such as M-estimators, RANSAC, Hough Transform, 

etc., put the onus on the "user" - they simply require some user-set parameters that are 

linked to the scale of inliers. Others, such as LMedS, RESC, MDPE, QMDPE, etc., use an 

auxiliary estimate of scale (after finding the parameters of a model) during a post-

processing stage, which aims to differentiate inliers from outliers.  

Given a scale estimate, s, the inliers are usually taken to be those data points that satisfy 

the following condition:  

i r /s T<                                                             ( 7.1) 

where ri is the residual of i'th sample, and T is a threshold. For example, if T is 2.5 (1.96), 

98% (95%) percent of a Gaussian distribution will be identified as inliers.  

7.2.1 The Median and Median Absolute Deviation (MAD) Scale Estimator  

Among many robust estimators, the sample median is one of the most famous estimators. 

The sample median is bounded when the data include more than 50% inliers. A robust 

median scale estimator is then given by (Rousseeuw and Leroy 1987): 

           251.4826(1 ) ii
M med r

n p
= +

−                                                  ( 7.2) 

where ri is the residual of i'th sample, n is the number of sample points and p is the 

dimensions of parameter space (e.g., 2 for a line, 3 for a circle). 

A variant, MAD, is also used to estimate the scale of inliers (Rousseeuw and Croux 1993): 

         MAD=1.4826medi{|ri-medjrj|}                                       ( 7.3) 
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The MAD estimator is very robust to outliers and has a 50% breakdown point. The outliers 

can be recognized by computing: 

i j j

n

r med r
T

MAD
−

<                                      ( 7.4) 

where T is a threshold. 

The median and MAD are often used to yield initial scale values (before estimating the 

parameters of a model) for many robust estimators. These two methods can also serve as 

auxiliary scale estimators (after finding the parameters of a model) for other robust 

estimators.  

Because the median and MAD have 50% breakdown points, they will break down when 

the data include more than 50% outliers. Both methods are biased for multiple-mode cases 

even when the data contains less than 50% outliers (see section  7.4). 

7.2.2 Adaptive Least K-th Squares (ALKS) Scale Estimator 

As we have outlined in section  2.4.5, the authors of ALKS (Lee, Meer et al. 1998) employ 

the robust k scale estimation technique in ALKS by searching for a model minimizing the 

k-th order statistics of the squared residuals. The optimal value of the k is that which 

corresponds to the minimum of the variance of the normalized error (see equation ( 2.32)). 

The authors assume that when k is increased so that the first outlier is included, the 

increase of kŝ is much less than that of kσ̂ . 

ALKS is limited in its ability to handle extreme outliers. Another problem we found 

(Wang and Suter 2003b) (also see chapter  4) in ALKS is its lack of stability under a small 

percentage of outliers. 
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7.2.3 Residual Consensus (RESC) Scale Estimator 

In section  2.4.6, we discussed the RESC estimator (Yu, Bui et al. 1994). In that section, we 

concentrate on the estimation of the parameters, not on scale estimation. After finding a fit, 

RESC estimates the scale of the fit by directly calculating: 

2 1/ 2

1
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c c
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= −
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∑

∑
              ( 7.5) 

where ch is the mean of all residuals included in the compressed histogram; α is a correct 

factor for the approximation introduced by rounding the residuals in a bin of the histogram 

to δi  (δ is the bin size of the compressed histogram); v is the number of bins of the 

compressed histogram.  

However, we found the estimated scale is still overestimated for the reason that, instead of 

summing up squared differences between all individual residuals and the mean residual in 

the compressed histogram, equation ( 7.5) sums up the squared differences between 

residuals in each bin of compressed histogram and the mean residual in the compressed 

histogram. 

To reduce this problem, we revise equation (7.5) as follows: 
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where nc is the number of data points in the compressed histogram. 

7.2.4 Modified Selective Statistical Estimator (MSSE) 

Bab-Hadiashar and Suter (Bab-Hadiashar and Suter 1999)  have used least k-th order 

(rather than median) methods and a heuristic way of estimating scale to perform range 

segmentation. After finding a fit, they tried to recognize the first outlier, by detecting the k-

th residual jumps, which can indicate the unbiased scale estimate using the first k-th 

residuals in an ascending order:  
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where p is the dimension of the model.  

They assume that when k is increased, the value of the k-th residual will jump when it 

comes from a different distribution. Thus, the scale can be estimated by checking the 

validity of the following inequality: 
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Because this method does not rely on the k-th order statistics (it uses only the first k data 

points that has been classified as inliers), it is less biased when data include multiple-

structural distribution. 

However, though their method can handle large percentages of outliers and pseudo-

outliers, it does not seem as successful in tolerating extreme cases 

7.3 A Novel Robust Scale Estimator: TSSE 

In this section, we will produce a mean shift valley (MSV) technique and then, we propose 

a highly robust scale estimator (TSSE), which is very robust to multiple-structural data.  

 

7.3.1 Mean Shift Valley Algorithm 

Although the mean shift method has been extensively exploited and applied in low level 

computer vision tasks (Cheng 1995; Comaniciu and Meer 1997; Comaniciu and Meer 

1999b; Comaniciu and Meer 2002a) for its efficiency in seeking local peaks of probability 

density, sometimes it is very important to find the valleys of distributions. Based upon the 

Gaussian kernel, a saddle-point seeking method was published in (Comaniciu, Ramesh et 
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al. 2002b). Here, we provide a more simple method to find local valleys in a one 

dimensional function.   

One characteristic of the mean shift vector is that it always points towards the direction of 

the maximum increase in the density. Thus the direction opposite to the mean shift vector 

will always point toward to a local minimum density. In order to find valley in density 

space, we define the mean shift valley vector )(MVh x  to point in the opposite direction to 

the peak: 

h h
( )

1MV ( ) -M ( )
i h

i
x S xx

x x x x
n ∈

= = − ∑                                          ( 7.9) 

Replacing )(M h x in ( 4.6) by )(MVh x , we can obtain: 

2

h

ˆ ( )MV ( ) ˆ2 ( )
h f xx

d f x
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+
                                               ( 7.10) 

)(MVh x always points towards the direction of the maximum decrease in the density. 

In practice, we find that the step-size given by the above equation may lead to oscillation. 

Thus we derive a recipe for avoiding the oscillations in valley seeking. Let {yk}k=1,2… be 

the sequence of successive locations of the mean shift valley procedure, then we take a 

modified step by: 

                                        yk+1=yk+ )( kh yMVp ⋅                            ( 7.11) 

where p is a correction factor, and 10 ≤< p .  

If the shift step at yk is large, it causes yk+1 to jump over the local valley and thus oscillate 

over the valley. This problem can be avoided when we adjust the correction factor p so that 

MVh(yk)T MVh(yk+1)>0. 

The mean shift valley algorithm can be described as:  

1. Choose the bandwidth, h; set p =1; and initialise the location of the window.  
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2. Compute the shift step vector MVh(yk). 

3. Compute 1+ky  by equation ( 7.11) and )(MV 1h +ky . 

4. If MVh(yk)T MVh(yk+1)>0, go to step 5; Otherwise, we let p=p/2. Repeat step 3 and 

4 until MVh(yk)T MVh(yk+1)>0;  

5. Translate the search window by )( kh yMVp ⋅ . 

6. Repeat step 3 to step 5 until convergence. 

 

 

 

 

 

 

 

 

 

 

Figure  7.1: An example of the application of the mean shift valley method to find local 

valleys. 

To illustrate the mean shift valley method, three normal modes (mode 1 includes 600 data 

points, mode 2 includes 500 data points, and mode 3 includes 600 data points) with a total 

of 1700 data points were generated in Figure  7.1. We selected two initial points: V0 (0.3) 

and V1 (7.8). The search window radius was chosen as 2.0. The mean shift valley method 

automatically found the local minimum densities (converged points). Precisely: V0’ was 

located at 2.1831, and V1’ was at 5.8898. The centers (V0’ and V1’) of the converged 

windows correspond to the local minimum probability densities. If we use V0’ and V1’ as 

two density thresholds, the whole data can be decomposed into three modes (see Table 7.1).  
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There is one exceptional case: when there are no local valleys (e.g., uni-modal), the mean 

shift valley method is divergent. This can easily be avoided by terminating when no 

samples fall within the window.  

Next, we will apply the mean shift and mean shift valley methods, in (one-dimensional) 

residual space, to produce a highly robust scale estimator: Two-Step Scale Estimator. 

7.3.2 Two-Step Scale Estimator (TSSE)  

We base our method on the assumption that the inliers occupy relative majority, and are 

Gaussian distributed, but the whole data can include multiple-structural distribution.  Thus, 

we propose a robust two-step method to estimate the scale of the inliers.  

(1) Use mean shift, with initial center zero (in ordered absolute residual space), to find 

the local peak, and then use the mean shift valley to find the valley next to the peak. 

Note: modes other than the inliers will be disregarded as they lie outside the 

obtained valley. 

(2) Estimate the scale of the fit by the median scale estimator using the points within 

the band centered at the local peak extending to the valley. 

TSSE is very robust to outliers and can resist heavily contaminated data with multiple 

structures. In next section, we will compare the achievements of our method and other five 

methods. The experiments will show the advantages of the proposed method over other 

methods 

Mode 1 Mode 2 Mode 3  

 Mean Number Mean Number Mean Number

Generated Data 0 600 4 500 8 600 

Estimated Parameters -0.0736 603 4.0419 488 7.9592 609 

Table 7.1: Applying the mean shift valley method to decompose data. 
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7.4 Experiments on Robust Scale Estimation 

In this section, we will investigate the behaviour of several state-of-the-art robust scale 

estimators that are widely used in computer vision community and show the weakness of 

these scale estimation techniques. We assume the parameters of the model have been 

correctly estimated. In the following experiments, we compare the proposed method — 

TSSE, with other five robust scale estimators: the median, MAD, ALKS, MSSE, and the 

revised RESC (according to revised equation ( 7.6). Comparative experiments show the 

proposed method achieves better results than the other five robust scale estimators.   

The signals were generated as follows: The i'th structure has ni data points, corrupted by 

Gaussian noise with zero mean and standard variance σi. α data points were randomly 

distributed in the range of (0, 100). 

7.4.1 Normal Distribution 

First, we generate a simple line signal: One line: x:(0-55), y=30, n1=10000, σ1=3; α=0, i.e., 

100% inliers; After we applied the six robust scale estimators to the signal, we obtained the 

following estimates: Median (3.0258); MAD (3.0237); ALKS (2.0061); MSSE (2.8036); 

the revised RESC (2.8696); and TSSE (3.0258). Among these six comparative methods, 

the median, MAD, and TSSE gave the most accurate results. ALKS gave the worst result. 

This is because the robust estimate kŝ is an underestimate of σ  for all values of k 

(Rousseeuw and Leroy 1987) and because the criterion equation ( 2.32) estimates the 

optimal k wrongly. ALKS used only about 15% data as inliers. MSSE used 98% of the data 

points as inliers, which is reasonably good.   

7.4.2 Two-mode Distribution 

In this subsection, we analyse more complicated data. We generated a step signal so that 

the data include two structures, i.e. two lines. 
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A step signal: line1: x:(0-55), y=40, n1=3000, σ1=3; line2: x:(55-100), y=70, n2=2000, 

σ2=3; α=0. 

The results that we obtained are as follows: the median (6.3541); MAD (8.8231); ALKS 

(3.2129); MSSE (2.8679); the revised RESC (2.9295); and TSSE (3.0791). Among these 

six methods, the median and MAD gave the worst results. This is because the median and 

MAD scale estimators assume the residuals of the whole data are at Gaussian distribution, 

which is violated in the signal (containing two modes). The other four robust scale 

estimators yield good results. 

7.4.3 Two-mode Distribution with Random Outliers 

Next, we again use the above one-step signal. However, we increased the number of 

outliers so that the data include 80% of outliers, i.e., n1=1000; n2=750; α=3250. 

After applying the six methods, the estimated scale of the signal that we obtained are: the 

median (34.0962); MAD (29.7909); ALKS (7.2586); MSSE (27.4253); the revised RESC 

(24.4297); and TSSE (4.1427). From the obtained results, we can see that only the 

proposed method gave a reasonably good result, while all other five methods failed to 

estimate the scale of the inliers when the data involve a high percentage of outliers. 

7.4.4 Breakdown Plot 

7.4.4.1 A Roof Signal 

We generate a roof signal containing 500 data points in total. A roof: x:(0-55), y=x+30, n1, 

σ=2; x:(55-100), y=140-x, n2=50; σ=2. 

At the beginning, we assign 450 data point to n1 and the number of the uniform outliers α 

=0; Thus, the data include 10% outliers. Then, we decrease n1, and at the same time, we 

increase α so that the total number of data points is 500. Finally, n1=75, and α=375, i.e. the 

data include 85% outliers. The results are repeated 20 times. 
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Figure  7.2 shows that TSSE yielded the best results among the six comparative methods. 

The revised RESC method begins to break down when the outliers occupy around 60%. 

MSSE gave reasonable results when the percentage of outliers is less than 75%, but it 

broke down when the data include more outliers. Although the breakdown points of the 

median and the MAD scale estimators are as high as 50%, their results deviated from the 

true scale even when outliers are less than 50% of the data. They are biased more and more 

from the true scale with the increase in the percentage of outliers. ALKS yielded less 

accurate results than TSSE, and less accurate results than the revised RESC and MMSE 

when outliers are less 60%. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure  7.2: Breakdown plot of six methods in estimating the scale of a roof signal. 

 

7.4.4.2 A Step Signal  

We generated another signal: one-step signal that contains 1000 data points in total. One-

step signal: x:(0-55), y=30, n1, σ=2; x:(55-100), y=40, n2=100; σ=2.  

At the beginning, we assign n1 with 900 data points and the number of the uniform outliers 

α =0; Thus, the data include 10% outliers. Then, we decrease n1, and at the same time, we 
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increase α so that the number of the whole data points is 1000. Finally, n1=150, and 

α=750, i.e. the data include 85% outliers. 

From Figure  7.3, we can see that TSSE gave the most accurate estimation of the scale of 

the signal. In contrast, the revised RESC begins to break down when the number of outliers 

is about 50% of the data.  MSSE gave reasonable results when the percentage of outliers is 

less than 70%. However, it broke down when the data include more outliers. The median 

and the MAD scale estimators are more and more biased with the increase in the 

percentage of outliers for the two-structured signal. ALKS yielded less satisfactory results. 
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Figure  7.3: Breakdown plot of six methods in estimating the scale of a step signal. 

Compared with Figure  7.2, we can see that the revised RESC, MSSE, and ALKS yielded 

less accurate results for small scale step signal than roof signal, but the results of the 

proposed TSSE are similar accurate for both types of signals. Even when the data include 

85% outliers, the recovered scales of inliers by TSSE for the one-step signal are 2.95, 

which is reasonably good.   
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7.4.4.3 Breakdown Plot for Robust Scale Estimator 

 

If the data have a Gaussian like distribution, the median scale estimator ( 7.1) is only one 

possible robust k scale estimator ( 2.31) (corresponding to k=0.5n). We investigated the 

achievements of the robust k scale estimator (assuming the correct parameters of a model 

have been found). Let:   

]2/)1[(

ˆ
)( 1 q

d
qS q

+Φ
= −                ( 7.12) 

where q is set from 0 to 1. Thus S (0.5) is the median scale estimator. 

We generated a one-step signal containing 500 data points in total. One-step signal: x:(0-

55), y=30, n1, σ=1; x:(55-100), y=40, n2=50; σ=1. At the beginning, n1 = 450 and α =0; 

Then, we decrease n1, and at the same time, we increase α until n1=50, and α=400, i.e. the 

data include 90% outliers. 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.4: Breakdown plot of different robust k scale estimators. 

As Figure  7.4 shows, after finding the robust estimate of the parameters of a model, the 

accuracy of S (q) is increased with the decrease of q.  When the outliers are less than 50% 

of the whole data, the difference for different values of q is small. However, when the data 
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include more than 50% outliers, the difference for various values of q is large. This 

provides a useful cue for robust estimators, which use the median scale method to recovery 

the scale of inliers. 

7.4.4.4 Performance of TSSE 

From the experiments in this section, we can see the proposed TSSE is a very robust scale 

estimator, achieving better results than the other five methods. However, we must 

acknowledge that the accuracy of TSSE is related to the accuracy of kernel density 

estimation. In particular, for very few data points, the kernel density estimates will be less 

accurate. Also, the proposed TSSE may underestimate the scale if the underlying 

distribution is composed of heavily overlapping Gaussians 

We also note that, for the purposes of this chapter (only), we assume we know the 

parameters of the model: this is so we can concentrate on estimating the scale of the 

residuals. However, in practice, one cannot directly estimate the scale: the parameters of a 

model also need to be estimated. In the next chapter, we will propose a new robust 

estimator—Adaptive Scale Sample Consensus (ASSC) estimator, which can estimate the 

parameters and the scale simultaneously. 

7.5 Conclusions 

In this chapter, we show that scale estimation for data, involving multiple structures and 

high percentages of outliers, is as yet a relatively unsolved problem. This provides an 

important warning to the computer vision community: it is necessary to carefully choose a 

proper scale estimator.  

We also, based on the mean shift algorithm, propose a simple but efficient mean shift 

valley technique, which can be used to find local valley. Furthermore, we propose a 

promising robust scale estimator (TSSE), based on the mean shift and the mean shift valley 

techniques. The experiments are compared with five other state-of-the-art robust scale 
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estimators, and show the advantages of TSSE over these methods, especially, when the 

data involve a high percentage of outliers and the noise level of inliers is large. TSSE is a 

very general method and can be used to give an initial scale estimate for robust estimators 

such as M-estimators, etc. TSSE can also be used to provide an auxiliary estimate of scale 

(after the parameters of a model to fit have been found) as a component of almost any 

robust fitting method such as Hough Transform (Hough 1962), MDPE (chapter  4) and 

QMDPE (chapter  5), etc.  
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8. Robust Adaptive-Scale Parametric Model Estimation for Computer Vision  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.1 Introduction 

Robust model fitting essentially requires the application of two estimators. The first is an 

estimator for the values of the models parameters. The second is an estimator for the scale 

of the noise in the (inlier) data. In the previous chapter, we proposed a novel robust scale 

estimation technique: the Two-Step Scale estimator (TSSE) and shown the performance of 

TSSE despite heavily contaminated data, assuming that the correct parameters of a model 

are available. However, in many practical cases, the parameters of a model and the scale of 

inliers need to be estimated simultaneously. In this chapter, based on our previous work 

(TSSE), we will propose a novel robust estimator: Adaptive Scale Sample Consensus 

(ASSC) estimator. The ASSC estimator combines Random Sample Consensus (RANSAC) 

and TSSE. ASSC also uses a modified objective function that depends upon both the 

number of inliers and the corresponding scale.  

Discontinuous signals (such as parallel lines/planes, step lines/planes, etc.) often appear in 

computer vision tasks. A lot of work has been done to investigate the behaviour of robust 

estimators for discontinuous signals, e.g., (Miller and Stewart 1996; Stewart 1997; Stewart 

1.1.7.  Chapter 8 

Robust Adaptive-Scale Parametric 
Model Estimation for Computer Vision
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1999; Chen and Meer 2002). Discontinuous signals are hard to deal with: e.g., most robust 

estimators break down and yield a “bridge” between the two planes of one step signal. 

ASSC is very robust to discontinuous signals and data with multiple structures, being able 

to tolerate more than 80% outliers.  

The main advantage of ASSC over RANSAC is that prior knowledge about the scale of 

inliers is not needed. ASSC can simultaneously estimate the parameters of a model and the 

scale of inliers belonging to that model. Experiments on synthetic data show that ASSC 

has better robustness to heavily corrupted data than Least Median Squares (LMedS), 

Residual Consensus (RESC), and Adaptive Least K’th order Squares (ALKS). We also 

apply ASSC to two fundamental computer vision tasks: range image segmentation and 

robust fundamental matrix estimation. Experiments show very promising results.  

At the latter part of this chapter, we extend ASSC to produce ASRC (Adaptive-Scale 

Residual Consensus) estimator. ASRC scores a model based on both the residuals of inliers 

and the corresponding scale estimate determined by those inliers. The difference between 

ASRC and ASSC is: in ASSC, all inliers are treated as the same, i.e., each inlier 

contributes 1 to the object function of ASSC. However, in ASRC, the sizes of the residuals 

of inliers are influential.  

The main contributions of this chapter can be summarized as follows: 

•  By employing TSSE in a RANSAC like procedure, we propose a highly robust 

estimator: Adaptive Scale Sample Consensus (ASSC) estimator.  

•  Experiments presented show that ASSC is highly robust to heavily corrupted data 

with multiple structures and discontinuities (empirically, ASSC can tolerate more 

than 80% outliers), and that it outperforms several competing methods.  

•  ASSC is successfully applied in two fundamental and important computer vision 

tasks: range image segmentation and fundamental matrix estimation. The 

experiments show promising results. 
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•  We extend ASSC to produce ASRC which improves the objective function of 

ASSC by weighting each inlier differently according to the size of the residual of 

that inlier. Experiments showing the advantages of ASRC over ASSC. 

This chapter is organized as follows: in section  8.2, the robust ASSC estimator is proposed. 

In section  8.3, experimental comparisons, using both 2D and 3D examples, are presented. 

We apply ASSC to range image segmentation in section  8.4 and fundamental matrix 

estimation in section  8.5. We introduce ASRC and we provide some experiments showing 

the advantages of ASRC over ASSC in section  8.6. We state our conclusions in section  8.7.  

8.2 Adaptive Scale Sample Consensus (ASSC) Estimator 

Algorithm 

In section  2.4.3 we reviewed the RANSAC estimator. The criterion used by RANSAC is to 

maximize the number of data points within the user-set error bound. Clearly, this bound is 

related to the scale of the inliers (S). Mathematically, the RANSAC estimate can be written 

as: 

            θθ
θ ˆˆ

maxargˆ n=                      ( 8.1) 

where θ̂n  is the number of points whose absolute residual in the candidate parameter space 

is within the error bound (i.e., Sr 5.2≤ ));θ̂  is the estimated parameters from one of the 

randomly chosen p-subsets. 

The error bound in RANSAC is crucial to the performance of RANSAC. Provided with a 

correct error bound of inliers, the RANSAC method can find a model even when data 

contain a large percentage of gross errors.  However, when the wrong error bound is given, 

RANSAC will totally break down even when outliers occupy relatively small percentages 

of the whole data (see section  4.4.4.2). Thus the major problem with RANSAC is that the 
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technique needs priori knowledge of the error bound of inliers, which is not available in 

most practical vision tasks.  

In this section, we will, based upon our previously proposed TSSE, propose an adaptive-

scale robust estimator — ASSC. We assume that when a model is correctly found, two 

criteria should be satisfied: 

•  The number of data points (nθ) near or on the model should be as large as possible; 

•  The residuals of the inliers should be as small as possible. Correspondingly, the 

scale (Sθ) should be as small as possible. 

We therefore define our objective function as:  

)/(maxargˆ
ˆˆˆ θθθ

θ Sn=                      ( 8.2) 

Note: when the estimate of the scale is fixed, equation ( 8.2) is another form of RANSAC 

with the score nθ scaled by 1/S (i.e, a fixed constant for all p-subsets), yielding the same 

results as RANSAC. ASSC is more reasonable than RANSAC because the scale is 

estimated for each candidate fit, in addition to the fact that it no longer requires a user 

defined error-bound. 

 The ASSC algorithm is as follows: 

(1) Randomly choose one p-subset from the data points, estimate the model parameters 

using the p-subset, and calculate the ordered absolute residuals of all data points. 

(2) Choose the bandwidth by equation  6.6 and calculate an initial scale by a robust k 

scale estimator (equation  7.12) using q=0.2.    

(3) Apply TSSE to the absolute sorted residuals to estimate the scale of inliers. At the 

same time, the probability density at the local peak )(ˆ peakf and local valley 

)(ˆ valleyf  are obtained by equation ( 4.1).  
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(4) Validate the valley. Let )(ˆ valleyf / )(ˆ peakf = λ (where 1>λ ≥0). Because the 

inliers are assumed to have a Gaussian-like distribution, the valley is not 

sufficiently deep when λ is too large (say, 0.8). If the valley is sufficiently deep, go 

to step (5); otherwise go to step (1). 

(5) Calculate the score, i.e., the objective function of the ASSC estimator. 

(6) Repeat step (1) to step (5) many times. Finally, output the parameters and the scale 

S1 with the highest score.  

Because the robust k scale estimator is biased for data with multiple structures, the final 

scale of inliers S2 should be refined when the scale S1 obtained by TSSE is used. In order to 

improve the statistical efficiency, a weighted least square procedure ((Rousseeuw and 

Leroy 1987), p.202) is carried out after finding the initial fit. 

Instead of estimating the fit involving the absolute majority in the data set, the ASSC 

estimator finds a fit having a relative majority of the data points. This makes it possible, in 

practice, for ASSC to obtain a high robustness so that it can tolerate more than 50% 

outliers. Indeed, the experiments in the next section show that the ASSC estimator is a very 

robust estimator for data with multiple structures and a high percentage of outliers. 

8.3 Experiments with Data Containing Multiple Structures 

In this section, both 2D and 3D examples are given. The results of the proposed method are 

compared with those of three other popular methods: LMedS, RESC, and ALKS. All of the 

four methods use the random sampling scheme that is also at the heart of our method. 

Note: unlike the experiments in section  7.4, here we do not (of course) assume any 

knowledge of the parameters of the models in the data. Nor are we aiming to find any 

particular structure. Due to the random sampling used, the methods will possibly return a 

different structure on different runs – however, they will generally find the largest 

structure most often (if one dominates in size). 
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8.3.1 2D Examples  
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   (c)       (d) 

Figure  8.1: Comparing the performance of four methods: (a) fitting a line with a total of 

90% outliers; (b) fitting three lines with a total of 88% outliers; (c) fitting a step with a 

total of 85% outliers; (d) fitting three steps with a total of 89% outliers. 

We generated four kinds of data (a line, three lines, a step, and three steps), each with a 

total of 500 data points. The signals were corrupted by Gaussian noise with zero mean and 

standard variance σ. Among the 500 data points, α data points were randomly distributed 

in the range of (0, 100). The i'th structure has ni data points.  

(a) One line: x:( 0-100), y=x, n1=50;  α=450; σ=0.8. 

(b) Three lines: x:(25-75), y=75, n1=60; x:(25-75), y=60, n2=50; x=25, y:(20-75), 

n3=40; α=350; σ=1.0. 
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(c) One step: x:(0-50), y=35, n1=75; x:(50-100), y=25, n2=55; α=370; σ=1.1.  

(d) Three steps: x:(0-25), y=20, n1=55; x:(25-50), y=40, n2=30; x:(50-75), y=60, n3=30; 

x:(75-100), y=80, n4=30; α=355; σ=1.0. 

In Figure  8.1, we can see that the proposed ASSC method yields the best results among the 

four methods, correctly fitting all four signals. Because LMedS has a 50% breakdown 

point, it failed to fit all the four signals. Although ALKS can tolerate more than 50% 

outliers, it failed in all four cases with very high outlier content. RESC gave better results 

than LMedS and ALKS. It succeeded in two cases (one-line and three-line signals) even 

when the data involved more than 88% outliers. However, RESC failed to fit two signals 

(Figure  8.1 (c) and (d)). 

It should be emphasized that both the bandwidth choice and the scale estimation in the 

proposed ASSC method are data-driven. No prior knowledge about the bandwidth and the 

scale is necessary in the proposed method. This is a great improvement over the traditional 

RANSAC method where the user must set a priori scale-related error bound. 

8.3.2 3D Examples 

Two synthetic 3D signals were generated. Each contained 500 data points and three planar 

structures. Each plane contains 100 points corrupted by Gaussian noise with standard 

variance σ; 200 points are randomly distributed in a region including all three structures. A 

planar equation can be written as Z=AX+BY+C, and the residual of the point at (Xi, Yi, Zi) is 

ri=Zi-AXi-BYi-C. (A, B, C; σ) are the parameters to estimate. 

In contrast to the section  8.3.1, we now attempt to find all structures in the data. In order to 

extract all planes, we:  

(1) Apply the robust estimators to the data set and estimate the parameters and scale of a 

plane;  

(2) Extract the inliers and remove them from the data set;  
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(3) Repeat step 1 to 2 until all planes are extracted.  
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Figure  8.2: First experiment for 3D multiple-structure data: (a) the 3D data; the results by 

(b) the ASSC method; (c) by RESC; and (d) by ALKS. 

 

 Plane A Plane B Plane C 

True values (3.0, 5.0, 0.0; 3.0) (2.0, 3.0, 0.0; 3.0) (2.0, 3.0, 80.0; 3.0) 

ASSC (3.02, 4.86, 1.66; 3.14) (2.09, 2.99, 0.56, 3.18) (1.79, 2.98, 83.25, 3.78) 

RESC (3.69, 5.20, -7.94, 36.94) (4.89, 13.82, -528.06,51.62) and (-2.88,-1.48, 189.62,0.47) 

ALKS (2.74, 5.08, 1.63; 44.37) (-7.20, 0.91,198.1; 0.007) and (-0.59,1.82,194.06; 14.34) 

LMedS (1.22, 3.50,30.36, 51.50), (-0.11, -3.98, 142.80; 31.31) and (-9.59, -1.66,251.24;0.0) 

Table  8.1: Result of the estimates of the parameters (A, B, C; σ) provided by each of the 

robust estimators applied to the data in Figure  8.2. 
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   (a)          (b) 
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Figure  8.3: Second experiment for 3D multiple-structure data: (a) the 3D data; the results 

by (b) the proposed method; (c) by RESC; (d) and by ALKS. 

 
 

 Plane A Plane B Plane C 

True values (0.0, 3.0, -60.0; 3.0) (0.0, 3.0, 0.0; 3.0) (0.0, 0.0, 40.0; 3.0) 

ASSC (0.00, 2.98, -60.68, 2.11) (0.18, 2.93, 0.18, 3.90) (0.08, 0.03, 38.26; 3.88)

RESC (0.51, 3.04,-67.29;36.40) (6.02,-34.00,-197.51;101.1) and (0.35, -3.85, 122.91, 0.02) 

ALKS (-1.29, 1.03,14.35; 30.05), (-1.07, -2.07,84.31; 0.01) and (1.85, -11.19, 36.97; 0.08) 

LMedS (0.25, 0.61,24.50, 27.06), (-0.04, -0.19, 92.27; 9.52) and (-0.12, -0.60,92.19; 6.89) 

Table  8.2: Result of the estimates of the parameters (A, B, C; σ) provided by each of 

the robust estimators applied to the data in Figure  8.3.  
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The red circles constitute the first plane extracted; the green stars the second plane 

extracted; and the blue squares the third extracted plane. The results are shown in Figure 

 8.2, Table  8.1; Figure  8.3 and Table  8.2 (the results of LMedS, which completely broke 

down for these 3D data sets, are only given in Table  8.1 and Table  8.2). Note for RESC, 

we use the revised form in equation ( 7.6) instead of equation ( 7.5) for scale estimate.  

Similarly, in the second experiment (Figure  8.3 and Table  8.2), LMedS and ALKS 

completely broke down for the heavily corrupted data with multiple structures. RESC, 

although it correctly fitted the first plane, wrongly estimated the scale of the inliers to the 

plane. RESC wrongly fitted the second and the third planes. Only the proposed method 

correctly fitted all three planes (Figure  8.3 (b)) and estimated the corresponding scale for 

each plane. 

The proposed method is computationally efficient. We perform the proposed method in 

MATLAB code with TSSE in Mex. When m is set as 500, the proposed method takes 

about 1.5 second for the 2D examples and about 2.5 seconds for the 3D examples in an 

AMD 800MHz personal computer. 

8.3.3 The Breakdown Plot of the Four Methods 

In this subsection, we perform an experiment to draw the breakdown plot of each method 

(similar to the experiment reported in (Yu, Bui et al. 1994). However, the data that we use 

is more complicated because it contains two types of outliers: clustered outliers and 

randomly distributed outliers).  

We generate one plane signal with Gaussian noise having unit standard variance. Both 

clustered outliers and randomly distributed outliers are added to the data. The clustered 

outliers have 100 data points and are distributed within a cube. The randomly distributed 

outliers contain the plane signal and clustered outliers. The number of inliers is decreased 

from 900 to 100. At the same time, the number of randomly distributed outliers is 

increased from 0 to 750 so that the total number of the data points is kept 1000.  Thus, the 

outliers occupy from 10% to 90% outliers. Examples for data with 20% and 70% outliers 

are shown in Figure  8.4 (a) and (b) to illustrate the distributions of the inliers and outliers.  
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If an estimator is robust enough to outliers, it can resist the influence of both clustered 

outliers and randomly distributed outliers even when the outliers occupy more than 50% of 

the data. In order to increase the stability of the result, we perform the experiments 20 

times, using different random sampling seeds, for each data set involving different 

percentage of outliers (10% to 90%). An averaged result is show in Figure  8.4 (c-e). 

 

 

 

 

 

 

 

 

                                         (a)                                                                         (b) 

 

 

 

 

 

  

                (c)       (d)          (e) 

Figure  8.4: Breakdown plot of the four methods: (a) example of the data with 20% outliers; 

(b) example of the data with 80% outliers; (c) the error in the estimate of parameter A, (d) 

in parameter B, and (e) in parameter C. 

From Figure  8.4 (c-e), we can see that our method obtains the best result. Because the 

LMedS has only 50% breakdown point, it broke down when outliers occupied more than 

50% of the data (approximately). ALKS broke down when outliers had about 75%. RESC 

began to break down when outliers had more than 83% of the whole data; In contrast, the 

ASSC estimator is the most robust to outliers. It began to breakdown at 89% outliers. In 

fact, when the inliers are about (or less than) 10% of the data, the assumption that inliers 
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should occupy a relative majority of the data is violated. Bridging between the inliers and 

the clustered outliers tends to yield a higher score. Other robust estimators also suffer from 

the same problem.    

8.3.4 Influence of the Noise Level of Inliers on the Results of Robust Fitting 

Next, we will investigate the influence of the noise level of inliers on the results of the 

chosen four robust fitting methods. We use the signal shown in Figure  8.4 (b) with 70% 

outliers. However, we change the standard variance of the plane signal from 0.1 to 3, with 

increment 0.1. 

 

 

 

 

 

 

 

                           (a)                                              (b)                                             (c) 

Figure  8.5: The influence of the noise level of inliers on the results of the four methods: 

plots of the error in the parameters A (a), B (b) and C (c) for different noise level. 

Figure  8.5 shows that LMedS broke down first. This is because LMedS cannot resist the 

influence of outliers when the outliers occupy more than a half of the data points. ALKS, 

RESC, and ASSC estimators all can tolerate more than 50% outliers. However, among 

these three robust estimators, ALKS broke down first. It began to break down when the 

noise level of inliers is increased to 1.7. RESC is more robust than ALKS: it began to 

break down when the noise level of inliers is increased to 2.3. The ASSC estimator shows 

the best achievement. Even when the noise level is increased to 3.0, the ASSC estimator 

did not break down yet. 
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8.3.5 Influence of the Relative Height of Discontinuous Signals 

In this subsection, we will investigate the influence of the relative height of discontinuous 

signals on the performance of the four methods.  
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                       (d1)     (d2)        (d3) 

Figure  8.6: The influence of the relative height of discontinuous signals on the results of 

the four methods: (a) two parallel planes; (b) one step signal; (c1-c3) the results for the two 

parallel planes; (d1-d3) the results for the step signal. 
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We generate two discontinuous signals: one containing two parallel planes and one 

containing one-step planes. The signals have unit variance. Randomly distributed outliers 

covering the regions of the signals are added to the signals. Among the total 1000 data 

points, there are 20% pseudo-outliers and 50% random outliers. The relative height is 

increased from 1 to 20. Figure  8.6 (a) and (b) shows examples of the data distributions of 

the two signals with relative height 10.  The averaged results (over 20 repetitions) obtained 

by the four robust estimators are shown in Figure  8.6 (c1-c3) and (d1-d3). 

From Figure  8.6, we can see the tendency to bridge becomes stronger as the step decreases. 

LMedS shows the worst results among the four robust estimators. For the rest three 

estimators: ASSC, ALKS, and RESC, from Figure  8.6 (c1-c3) and (d1-d3), we can see 

that: 

•  For the parallel plane signal, the results by ALKS are affected most by the small 

step. RESC shows better result than ALKS. However, ASSC shows the best result. 

•  For the step signal, when the step height is small, all of these three estimators are 

affected. When the step height is increased from small to large, all of the three 

estimators show robustness to the signal. However, ASSC achieves the best results for 

small step height signals.   

In next sections, we will apply the ASSC estimator to more "real world" computer vision 

tasks: range image segmentation and fundamental matrix estimation.  

8.4 ASSC for Range Image Segmentation  

The range image segmentation algorithm that we present here is based on the just 

introduced ASSC estimator. Although MDPE in chapter  4, has similar performance to 

ASSC, MDPE only outputs the parameters of the model as results. An auxiliary scale 

estimator is required to provide an estimate of the scale of inliers.  ASSC, however, does 

not need any auxiliary scale estimator at the post-processing stage. It can estimate the scale 

of inliers during the process of estimating the parameters of a model.  
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8.4.1 The Algorithm of ASSC-Based Range Image Segmentation 

We employ a hierarchical structure, similar to that in chapter  5. We begin with bottom 

level containing 64x64 pixels that are obtained by using regular sampling on the original 

512x512 image. In each level of the hierarchy, we: 

(1) Apply the ASSC estimator to obtain the parameters of plane and the scale of inliers.  

(2) The inliers (in the top hierarchy) corresponding to the estimated parameters of plane 

and scale are then identified. If the number of inliers is less than a threshold, go to step 

(7). This step is different from the step (4) in section  5.4.2 in that the parameters of 

plane and the corresponding scale of inliers are obtained simultaneously in ASSC; 

while QMDPE needs an auxiliary scale estimator to obtain the scale of inliers.  

(3) Use normal information to validate the inliers obtained in step (2). This step is similar 

to the step (5) in section  5.4.2. If the number of the validated inliers is small, go to step 

(7). 

(4) Fill in the holes inside the maximum connected component from the validated inliers. 

The holes may appear because of sensor noise or because some points have large 

residuals and are beyond the range that is related to the estimated scale. 

(5) Assign a label to the points corresponding to the connected component from step (4) 

and remove the points from the data set that will be further processed. This happens in 

the top of the hierarchy.   

(6) If a point is unlabelled and it is not a jump edge point, the point will be used as a "left-

over" point. After collecting all these points, use the connected component algorithm to 

get the maximum connected component. If the number data points of the maximum 

connected component of "left-over" points is smaller than a threshold, go to step (7); 

otherwise, get the data for the current hierarchical level by regularly sampling on the 

maximum connected component obtained in this step, then go to step (1). 

(7) Terminate the processing in the current level of the hierarchy and go to the higher-level 

hierarchy until the top of the hierarchy. 



 151

8.4.2 Experiments on Range Image Segmentation 
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            (c1)      (c2)                (c3) 

Figure  8.7: Segmentation of ABW range images from the USF database. (a1, b1, c1) 

Range image with 26214 random noise points; (a2, b2, c2) The ground truth results for the 

corresponding range images without adding random noise; (a3, b3.c3) Segmentation result 

by the proposed algorithm. 

To show the performance of the proposed ASSC-based range image segmentation 

algorithm, we do experiments similar to those in section  5.5 by adding 26214 random noise 
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points to the range images taken from the USF ABW range image database (test 16, test 7 

and train 5).  

As shown in Figure  8.7, all of the main surfaces (structures) were recovered by our 

method. Only a slight distortion appeared on some boundaries of neighbouring surfaces. 

Similar slight distortion also appears in the experimental results (by QMDPE) in chapter  5. 

This is because of the sensor noise and the limited accuracy of the estimated normal at 

each range point. Generally speaking, the more accurate the range data are, and the more 

accurate the estimated normal at range points is, the less the distortion is. 

 

 

 

 

 

 

 

             (a)      (b)              (c) 

 

 

 

 

 

 

 

             (d)      (e)               (f) 

Figure  8.8: Comparison of the segmentation results for ABW range image (test 3) from the 

USF range image database. (a) Range image; (b) The result of ground truth; (c) The result 

by the USF;(d) The result by the WSU; (e) The result by the UE; (f) The result by the 

proposed method. 
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We also compare our results with those of the University of South Florida (USF), 

Washington State University (WSU), and the University of Edinburgh (UE) (Hoover, Jean-

Baptiste et al. 1996) methods. Figure  8.8(c-f) and Figure  8.9 (c-f) show the results obtained 

by the four methods. From Figure  8.8 (c) and Figure  8.9 (c), we can see that the USF’s 

results contained many noisy points. In both Figure  8.8 (d) and Figure  8.9 (d), the WSU 

segmenter missed one surface. The WSU segmenter also over segmented one surface in 

Figure  8.8 (d). Some boundaries on the junction of the segmented patch by the USF and 

WSU in Figure  8.9 (c) were relatively seriously distorted. The UE shows relatively better 

results than the USF and the WSU. However, some estimated surfaces are still noisy (see 

Figure  8.8 (e) and Figure  8.9  (e)).  Compared with the other three methods, the proposed 

method achieved the best results. All surfaces are recovered and the segmented surfaces 

are relatively “clean”. The edges of the segmented patches were reasonably good. 
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              (d)      (e)               (f) 

Figure  8.9: Comparison of the segmentation results for ABW range image (test 13) from 

the USF range image database. (a) Range image; (b) The result of ground truth; (c) The 

result by the USF; (d) The result by the WSU; (e) The result by the UE; (f) The result by 

the proposed method. 
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8.5 ASSC for Fundamental Matrix Estimation 

8.5.1 Background of Fundamental Matrix Estimation 

The fundamental matrix provides some constraints (related to epipolar geometry, 

projectivity, etc.) between corresponding points in multiple views. The estimation of the 

fundamental matrix is important for several problems: matching, recovering of structure, 

motion segmentation, etc.(Torr and Zisserman 2000). Since there possibly are mismatched 

pairs of points in the data, traditional method such as least squares estimator cannot yield 

accurate results. Even worse, the least squares estimator can breakdown. Robust estimators 

such as M-estimators, LMedS, RANSAC, MSAC and MLESAC have been applied to 

estimate the fundamental matrix to improve the accuracy of the results (Torr and Murray 

1997).  

Let {xi,} and {xi’} (for i=1,…,n) be a set of matched homogeneous image points viewed in 

image 1 and image 2 respectively. We have the following constraints for the fundamental 

matrix F:  

' 0 det[ ] 0T
i ix Fx and F= =                                               ( 8.3) 

We employ the 7-point algorithm (Torr and Murray 1999) to solve for candidate fits            

using Sampson distance for the residual to a fitted fundamental matrix. For the i’th 

correspondence, the residual ri using Simpson distance is:  

( )1/ 22 2 2 2
' '

i
i

x y x y

kr
k k k k

=
+ + +

     ( 8.4) 

 

8.5.2 The Experiments on Fundamental Matrix Estimation 

First, we generated 300 matches including 120 point pairs of inliers with unit Gaussian 

variance and 160 point pairs of random outliers. In practice, the scale of inliers is not 

' ' ' ' ' ' 2
1 2 3 4 5 6 7 8 9i i i i i i i i i i i i iwhere k f x x f x y f x f y x f y y f y f x f y fς ς ς ς ς= + + + + + + + +
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available. Thus, for RANSAC and MSAC, the median scale estimator, as recommended in 

(Torr and Murray 1999), is used to yield an initial scale estimate. The number of random 

samples is set to 10000.  The experiment was repeated 30 times and the averaged values 

are shown in Table  8.3 . From Table  8.3, we can see that our method yields the best result. 
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                                                                         (c) 

Figure  8.10: A comparison of correctly identified percentage of inliers (a), outliers (b), and 

the comparison of standard variance of residuals of inliers (c). 

 % of inliers correctly 
classified 

% of outliers 
correctly classified 

Standard variance 
of inliers 

Ground Truth 100.00 100.00 1.0 
ASSC 96.08 98.43 1.4279 
MSAC 100.00 60.48 75.2288 

RANSAC 100.00 0.56 176.0950 
LMedS 100.00 61.91 65.1563 

Table  8.3: An experimental comparison for data with 60% outliers. 
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Next, we draw the breakdown plot of the four methods. Among the total 300 

correspondences, the percentage of outliers is increased from 5% to 70% in increments of 

5%. The experiments were repeated 100 times for each percentage of outliers. If a method 

is robust enough, it should resist the influence of outliers and the correctly identified 

percentages of inliers should be around 95% (T is set 1.96 in equation  7.1) and the standard 

variance of inliers should be near to 1.0 regardless of the percentages of outliers actually in 

the data. We set the number of random samples, m, to be high enough to ensure a high 

probability of success. 

From Figure  8.10 we can see that MSAC, RANSAC, and LMedS all break down when the 

data involve more than 50% outliers. The standard variance of inliers identified by ASSC 

is the smallest of all of the estimates when the percentage of outliers is higher than 50%. 

Note: ASSC succeeds to find the inliers and outliers even when the outliers occupied 70% 

of the whole data. 
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            (d)                (e)               (f) 

Figure  8.11:  (a) (b) image pair (c) matches (d) inliers by ASSC; (e)  (f) epipolar geometry.  
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To conclude, we apply the proposed method on real image frames. Two frames of the 

Corridor sequence (bt.003 and bt.006), which can be obtained from 

http://www.robots.ox.ac.uk/~vgg/data/ (Figure  8.11 (a) and (b)). Figure  8.11 (c) shows the 

matches involving 500 point pairs in total. The inliers (201 correspondences) obtained by 

the proposed method are shown in Figure  8.11 (d). The epipolar lines (we draw 30 of the 

epipolar lines) and epipole using the estimated fundamental matrix by ASSC are shown in 

Figure  8.11 (e) and (f). We can see that the proposed method achieves a good result. 

Because the camera matrices of the two frames are available, we can obtain the ground 

truth fundamental matrix and thus evaluate the errors. From Table  8.4, we can see that 

ASSC performs the best among the four methods. 

8.6 A Modified ASSC (ASRC) 

8.6.1 Adaptive-Scale Residual Consensus (ASRC) 

In the previous experiments, we have seen the robustness of ASSC to outliers and multiple 

structures. However, all inliers in ASSC (equation  8.2), are treated as the same, i.e., each 

inlier contributes equivalently to the objective function of ASSC. Actually, inliers can have 

different influence on the results if we take into account the sizes of the residuals of inliers. 

Thus, we modify ASSC to yield a robust adaptive-scale residual consensus (ASRC) 

estimator.  

 Number of inliers (i.e., 
matched correspondences)

Mean error of 
inliers 

Standard variance of 
inliers 

ASSC 201 0.0274 0.6103 

MSAC 391 -1.3841 10.0091 

RANSAC 392 -1.0887 10.1394 

LMedS 372 -1.4921 9.5463 

Table  8.4: Experimental results on two frames of the Corridor sequence. 
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where  θ̂n  is the number of inliers which satisfies equation  7.1) for the fitted θ̂ .   

From equation ( 8.5), we can see that when the residual of a data point is zero, the point 

contributes 1 to the objective function of ASRC; when the residual of a data point is equal 

or larger than TSθ̂ , it does not contribute anything to the objective function of ASRC.   

8.6.2 Experiments  

 

 

 

 

 

 

 

 

              (a)                                            (b) 

 

 

 

 

 

 

 

 

               (c)                                              (d) 

Figure  8.12:  Comparing the performance of five methods: (a) fitting a roof with a total of 

87% outliers; (b) fitting F-figure with a total of 92% outliers; (c) fitting a step with a total 

of 91% outliers; (d) fitting three-step with a total of 91% outliers. 
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                                   (a)                                 (b)   

  

 

                                   (c)                                                                           (d) 

 

 

 

 

    (e)                                               (f) 

Figure  8.13: (a) the 3D data with 87% outliers; the extracted results by (b) ASRC; (c) 

ASSC; (d) RESC; (e) ALKS; and (f) LMedS. 

In this subsection, we will carry out some experiments showing the advantages of ASRC 

over ASSC and other robust methods (RESC, ALKS, LMedS). We use data similar to that 

used in section  8.3.1 and section  8.3.2, but with more outliers. 

From Figure  8.12 we can see that LMedS (50% breakdown point) failed to fit all four 

examples. Although ALKS is more robust than LMedS, it also failed to fit the four signals. 

RESC and ASSC succeeded in the roof signal (87% outliers), however, they both failed in 
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the other three cases. In contrast, ASRC correctly fits all four signals. ASRC doesn’t 

breakdown even when outliers occupy more than 90%, which is an improvement over 

ASSC. 

From Figure  8.13 (d) and (e), we can see that RESC and ALKS, which claim to be robust 

to data with more than 50% outliers, failed to extract the three planes. This is because the 

estimated scales (by RESC and ALKS) for the first plane were wrong, which caused these 

two methods to fail to fit the second and third planes. Because the LMedS (in  Figure  8.13 

(f)) has only a 50% breakdown point, it completely failed to fit data with such high 

contamination — 80% outliers. ASSC, although it correctly fitted the first plane, wrongly 

fitted the second and the third planes. Only the ASRC method correctly fitted and extracted 

all three planes (Figure  8.13 (b)).  

We also successfully applied the ASRC to range image segmentation and fundamental 

matrix estimation, which is similar to those in section  8.4 and  8.5. We recommend reading 

(Wang and Suter 2004) for details of those experiments. 

8.7 Conclusion 

In this chapter, we propose a very robust Adaptive Scale Sample Consensus (ASSC) 

estimator. The ASSC method has an objective function that considers both the number of 

inliers and the corresponding scale estimate for those inliers. ASSC is very robust to 

multiple-structural data containing high percentages of outliers (more than 80% outliers). 

The ASSC estimator is compared to several popular robust estimators: LMedS, RESC, and 

ALKS and ASSC can generally achieve better results. 

Furthermore, we applied ASSC to two important computer vision tasks: range image 

segmentation and robust fundamental matrix estimation. However, the applications of 

ASSC are not limited to these two fields. The computational cost of the proposed ASSC 

method is moderately low, which makes it applicable to many computer vision tasks.  
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We also improved ASSC: ASRC improves the objective function of ASSC by weighting 

each inlier differently according to the residual of that inlier.  

Although we have compared against several of the “natural competitors” from the 

computer vision and statistics literature (Fischler and Rolles 1981; Rousseeuw 1984; Yu, 

Bui et al. 1994; Lee, Meer et al. 1998), it is difficult to be comprehensive. For example, in 

(Scott 2001) the authors also proposed a method which can simultaneously estimate the 

model parameters and the scale of the inliers. In essence, the method tries to find the fit 

that produces residuals that are the most Gaussian distributed (or which have a subset that 

is most Gaussian distributed), and all data points are considered; In contrast, only the data 

points, within the band obtained by the mean shift and mean shift valley, are considered in 

our objective function. Also, we do not assume the residuals for the best fit will be the best 

match to a Gaussian distribution.  

In the latter stage of proposing ASSC/ASRC, we become aware that Gotardo, et al. 

proposed an improved robust estimator based on RANSAC and MLESAC (Gotardo, 

Bellon et al. 2003), and applied it to range image segmentation.  However, like RANSAC, 

this estimator also requires that the user to set the scale-related tolerance a priori. In 

contrast, the proposed ASSC/ASRC method in this chapter does not require any priori 

information about the scale or tolerance. The parameters of a model and the corresponding 

scale of inliers are simultaneously obtained from the data.  
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9. Mean shift for Image Segmentation by Pixel Intensity or Pixel 

Color 
 

 

 

 

 

 

 

 

 

 

 

 

9.1 Introduction 

One major task of pattern recognition, image processing, and related areas: is to segment 

image into homogenous regions. Image segmentation is the first step towards image 

understanding and its success directly affects the quality of image analysis. Image 

segmentation has been acknowledged to be one of the most difficult tasks in computer 

vision and image processing (Cheng, Jiang et al. 2001; Comaniciu and Meer 2002a). Note:  

the type of image we refer to in this chapter (grey/color) is different from that of the range 

image we referred to in chapter  5 and chapter  8. A range image contains 3D geometry 

information. That is, the value of a pixel in the range image corresponds to a depth/range 

measurement.  

Unlike other vision tasks such as parametric model estimation ((Wang and Suter 2003a; 

Wang and Suter 2003b), also see chapter  3- 5 and chapter  8) , fundamental matrix 

estimation (Torr and Murray 1997), optical flow calculation ((Wang and Suter 2003c); also 

see chapter  6), etc., there is no widely accepted model or analytical solution for image 

1.1.8.  Chapter 9 

Mean Shift for Image Segmentation by 
Pixel Intensity or Pixel Color 
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segmentation. There probably is no one "true" segmentation acceptable to all different 

people and under different psychophysical conditions. Indeed, acceptable segmentations 

may have to be defined for the different requirements one may have. All of these increase 

the difficulty of the segmentation task.  

A lot of image segmentation methods have been proposed during recent decades. Roughly 

speaking, these methods can be classified into (Cheng, Jiang et al. 2001): (1) Histogram 

thresholding (Kurugollu, Sankur et al. 2001); (2) Clustering (Comaniciu and Meer 1997; 

Zhang and Wang 2000; Chen and Lu 2001); (3) Region growing method (Adams and 

Bischof 1994); (4) Edge-based method (Nevatia 1977); (5) Physical-model-based method 

(Klinker, Shafer et al. 1990); (6) Fuzzy approaches (Pal 1992); and (7) Neural network 

based methods (Iwata and Nagahashi 1998).  

We have employed the mean shift algorithm extensively in our previously presented robust 

methods. In this chapter, we directly apply the mean shift method to image segmentation 

based on the image intensity or on the image color. As we stated in chapter  4, the mean 

shift is a form of mode seeking (in essence). It achieves a degree of scale selectivity since 

it works with a smoothed estimate of the underlying density function. In the most 

commonly used form (Fukunaga and Hostetler 1975; Comaniciu and Meer 2002a), the 

window size and the smoothing are directly related to a quantity h that is the “bandwidth” 

choice for the kernel density estimator employed.  

Although many authors of papers that employ the mean shift method have remarked that 

the value h needs to be chosen with care, the general impression given is that the results are 

not that sensitive to the choice of h and that one generally takes a pragmatic “hit and miss” 

affair. Thus, in the first part of this chapter we illustrate that there are two issues affected 

by the setting of h: the rather disastrous appearance of false peaks (where the application of 

the mean shift process will fail) and the choice of scale (affecting the significance of actual 

peaks in the underlying density – at large scales the density is very smoothed and local 

peaks are disregarded or merged). The latter behaviour is much more benign and, indeed, 

as it performs a type of controlled scale-space analysis, can be used to advantage. The 

former is to be avoided at all costs as it will result in completely arbitrary results. (This 
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behaviour, though, is due to the extreme quantized data — such as histogramed data and 

thus it may not arise in all applications). 

Thus, this chapter provides an important warning about the sensitivity of the mean shift to 

false peak noise due to the quantization. For simplicity, we choose the problem of 

histogram-based grey-level image segmentation. We show that one can rather simply 

predict values of h that will be problematic; and thereby, in this setting, we provide a 

means for a completely automated approach. This negates the need for the setting of a 

value for any parameter, including h (except that one may repeat the solution with a range 

of h to perform a type of scale space analysis). 

The general mean shift algorithm considers only the global color (or intensity) information 

of the image, while neglecting the local color information. In the second part of this 

chapter, we propose a new method of color image segmentation considering both global 

information and local homogeneity. We introduce local homogeneity information into the 

mean shift segmentation algorithm. The proposed method applies the mean shift algorithm 

in the hue and intensity subspace of HSV. The cyclic property of the hue component is also 

considered in the proposed method. Experiments on natural color images show promising 

results. 

The contributions of this chapter can be summarized as follows: 

•  We present the relationship between the grey-level histogram of an image and the 

mean shift method and analytically determine the conditions leading to the 

appearance of false peaks. We present an “unsupervised peak-valley sliding” 

algorithm for image segmentation. 

•  We introduce the local homogeneity concept into the mean shift method and 

propose a color image segmentation method considering the Cyclic Property of the 

Hue component. 

•  We carry out several experiments on both grey-level and color image and the 

results are promising.  
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9.2 False-Peak-Avoiding Mean Shift for Image Segmentation 

The mean shift (MS) algorithm is sensitive to local peaks. In this subsection, we show both 

empirically and analytically that when using sample data, the reconstructed PDF may have 

false peaks. We show how the occurrence of the false peaks is related to the bandwidth h 

of the kernel density estimator, using examples of gray-level image segmentation. It is well 

known that in MS-based approaches, the choice of h is important. However, we provide a 

quantitative relationship between the appearance of false peaks and the value of h. For the 

gray-level image segmentation problem, we not only show how to avoid the false peak 

problem, but also we provide a complete unsupervised peak-valley sliding algorithm for 

gray-level image segmentation.   

9.2.1 The Relationship between the Gray-Level Histogram of Image and the Mean 

Shift Method 

If we are segmenting a gray-level image based upon only the intensity characteristic of 

pixels, the mean-shift equations can be rewritten in terms of the image intensity histogram: 
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where H(ti) be the histogram on gray level ti (ti is an integer and 2550 ≤≤ it ). 

The kernel density function in equation ( 9.1) is related to discrete gray levels )}(|{ xStt hii ∈  
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The last term in equation ( 9.2) is called the sample mean shift Mh(x) in discrete gray-level 

space:  
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Equation ( 9.3) is derived from the Epanechnikov kernel. (Note: reference (Yang and Liu 

2001) employing a similar formulation used a Gaussian kernel - see equation (15) and (17) 

in that paper). 

9.2.2 The False Peak Analysis 

In implementing the mean shift approach in this setting, we found, to our surprise, in some 

cases there are a lot of peaks appearing between two consecutive gray levels near a local 

maximum density (see Figure  9.1 (a) and (b)). We call these peaks the false peaks. These 

false peaks will seriously affect the performance of the mean shift method, i.e. the mean 

shift is very sensitive to these noise peaks and the mean shift loop will stop at these false 

peaks instead of a real local maximum density.  

Here we analytically determine the conditions leading to this problem. For simplicity, we 

choose a one-dimensional setting. (However, the analysis of the influence of false peak 

noise on the mean shift and the mean shift valley can also be extended to multi-

dimensional case). Let )(ˆ
ktf be the kernel density estimate at gray level tk; let 10 << xδ ; 

d=1; and cd=2. Using equation ( 9.1) we have: 
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If h is an integer (h>0) and tk+h<255, and considering ti has to be a series of consecutive 

unsigned integer, we have      .                                 . 
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Figure  9.1: False peak noise. (a) Original probability density distribution with h equal to 5; 

(b) Zoom in a part of (a). Many false peaks introduced by A1+A2 in Eq. ( 9.6);  (c)-(e) A1, 

A2, and A1+A2 in Eq. ( 9.6) with tk=95.  

The equation ( 9.4) can be rewritten as: 
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When h>> xδ , A2 can be approximated as a linear equation (see Figure  9.1 (d)). 

Equation ( 9.5) can be rewritten as:  

                  21)(ˆ)(ˆ AAtfxtf kk ++=+δ                                          ( 9.6b) 

Now we calculate the derivative of )(ˆ xtf k δ+ with respect to xδ : 
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Substituting equation ( 9.3) into equation ( 9.8), and if 10 << xδ , i.e. if: 
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there will be a false peak appearing between two consecutive gray level, tk and tk+1. 

For example, in Figure  9.1, when we apply the mean shift method with initial location at 

95, we find the mean shift stopped at 95.7244, instead of the real local maximum density at 

101. From equation ( 9.8), we obtained xδ =0.7244, i.e. there is a false peak between 95 and 

96.  

We let L be the leftmost item in the in equation ( 9.9) and R be the rightmost item of ( 9.9); 

let xMS(tk) be the point which the mean shift converges to, from initial point at tk, 
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corresponding to the local peak. Thus if the condition: L<h<R is satisfied, we can predict 

that there will be a false peak between tk and tk+1 (see Table  9.1).  

 
 

 

 

 

 

 

 

 

 

 

 

Table  9.1: False peaks prediction 

The above analysis suggests that one could devise an approach that adaptively adjusts h 

depending upon whether false peaks are predicted. If a false peak is detected, we can use 

the following adjustment to avoid the influence of the false peak: 

( 9.10a) 

             ( 9.10b) 

9.2.3 An Unsupervised Peak-Valley Sliding Algorithm for Image Segmentation 

Consider the peaks {P(i)} and valleys {V(i)}. V(0)=0 and V(n)=255. 

)()(....)1()1()0( nVnPVPV ≤<<<≤ . The proposed algorithm is described as follows: 

(1) Initialise the bandwidth h and the location of search window. 

(2) Apply the mean shift algorithm to obtain peak Pk with the initial window location 

Vk-1+1.  

(3) Apply the mean shift valley method to obtain valley Vk with initial window location 

Pk+1. 

h L R xδ  tk xMS(tk) False peak between tk and tk+1

5 -1.45 7.45 0.72 95 95.72 yes 

6 -2.84 6.99 0.89 95 95.89 yes 

7 -5.76 6.06 1.08 95 96.96 no 

7 -5.10 7.45 0.96 96 96.96 yes 

8 -9.68 3.95 1.30 95 97.94 no 

8 -7.99 6.19 1.13 96 97.94 no 

8 -7.42 8.96 0.94 97 97.94 yes 

k+1 k h ky = y + ceil(M (y )) for MS step

k+1 k h ky = y + floor(MV (y )) for MSV step
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(4) Repeat step (2) and (3) until Pk or Vk is equal to or larger than 255. The questions 

remains as to how many of these peaks are significant. We post-process by step (5). 

(5) Validate peaks and valleys   

           (5a)  Remove peaks too small compared with the largest. 

           (5b)  Remove the smaller of two consecutive peaks if too close. 

           (5c)  Calculate the normalized contrast (Albiol, Torrest et al. 2001) for a valley and  

two neighbouring peaks: 

Height
Contrast=Contrast Normalized                              ( 9.11) 

where the contrast is the difference between the smaller peak and the valley. 

Remove the smaller one of the two peaks if this is small.  

After step 5(a)-5(c), we obtain several significant peaks {PS(1),…PS(k)}. The 

valleys then are chosen as the minimum of the valleys between two consecutive 

significant peaks. Thus we have k-1 valleys {VS(1),…VS(k-1)}. 

(6) Using the obtained valleys, finally obtain k segmented images by {[0, VS(1)], 

[VS(1), VS(2)], … [VS(k), 255]}.  

9.2.4 Experimental Results 

In this section, we will use several examples to show the performance of the proposed 

method in segmenting images. Figure  9.2 demonstrates the segmentation procedures of the 

proposed method. Figure  9.2 (c)/(d) shows the obtained peaks and valleys before/after 

validation . Before the validation, there are ten peaks and ten valleys obtained. Near a local 

plateau, there will be some insignificant peaks and valleys.  After applying step 5 in 

section  9.2.3, we finally obtained three validated valleys and thus we have four segmented 

images Figure  9.2 (e-h). The final result is shown in (i).    
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                   (a)                       (b)                (c) 

 

 

 

 

 

                    (d)            (e)               (f) 

 

 

 

 

 

 
 

                     (g)              (h)                           (i) 

Figure  9.2: The segmentation results of the proposed method (h=7). (a) original image of 

the cameraman; (b) gray-level histogram; (c) peaks and valleys of )(ˆ xf  before merging; (d) 

final peaks and valleys; (e)-(h) the resulting segmented images; (i) the final segmented 

image. 

Figure  9.3 hows another experiment on a x-ray medical image. From Figure  9.3, we can 

see that the x-ray image has been successfully segmented: the background (Figure  9.3 (c)), 

the bone (Figure  9.3 (d)), and the tissues (Figure  9.3 (e) were extracted separately.  
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The computational speed of the proposed algorithm is efficient: about 0.27 second using 

MATLAB code on an AMD 800MHz personal computer.   

 

 

 

 

 

 

                   (a)                                    (b)                                  (c) 

 

 

 

 

 

 

                    (d)                         (e)                                    (f) 

Figure  9.3: The application of the proposed method on medical images (h=2). (a) the 

original x-ray image; (b) the final peaks and valleys after validation; (c)-(e) the resulting 

segmented images; (i) the final segmented image. 

9.3 Color Image Segmentation Using Global Information and 

Local Homogeneity 

Clustering techniques identify homogeneous clusters of points in the feature space (such as 

RGB color space, HSV color space, etc.) and then label each cluster as a different region. 

The homogeneity criterion is usually that of color similarity, i.e., the distance between one 

cluster to another cluster in the color feature space should smaller than a threshold. The 

disadvantage of this method is that it does not consider local color information between 

neighbouring pixels.  
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In this section, we propose a new segmentation method introducing local homogeneity into 

a mean shift algorithm. Thus, our mean shift algorithm considers both global and local 

color information. The method is performed in "Hue-Value" two-dimensional subspace of 

Hue-Saturation-Value space (see section  9.3.1). Compared with those applying the mean 

shift algorithm in LUV or RGB color space, the complexity of the proposed method is 

lower. The proposed method also considers the cyclic property of the hue component and it 

does not need priori knowledge about the number of clusters and it detects the clusters 

unsupervised.  

In (Cheng and Sun 2000), the authors also proposed a peak-finding algorithm. 

Unfortunately, it is heuristically based. One characteristic of the mean shift vector is that it 

always points towards the direction of the maximum increase in the density. The 

converged centres (or windows) correspond to modes (or centres of the regions of high 

concentration) of data. The mean shift algorithm has a solid theoretical foundation. The 

proof of the convergence of the mean shift algorithm can be found in (Comaniciu and 

Meer 1999b; Comaniciu and Meer 2002a).  

9.3.1 HSV Color Space 

Although RGB (Red, Green, and Blue) is a widely used color space to represent the color 

information in a color image, HSV (Hue, Saturation, and Value) is sometimes preferred as 

the color space.  In the HSV color space, each color is determined by the values of HSV 

(see Figure  9.4). The first component, Hue, is a specification of the intrinsic color. The 

second component of the HSV triple, Saturation, describes, “how pure the color is”. The 

last component of the HSV triple is a measure of “how bright the color is”. The HSI (hue-

saturation-intensity), the HSB (hue-saturation-brightness), and the HSL (hue-saturation-

lightness) are variant forms of the HSV color space (Cheng, Jiang et al. 2001). This class 

of color space has been widely used in computer vision tasks (Cheng and Sun 2000; Zhang 

and Wang 2000; Sural, Qian et al. 2002). The reason that this class of color space is 

preferred to the RGB color space, is that it better represents human perception of colors. 

The advantages of hue over RGB are (Cheng and Sun 2000; Cheng and Y.Sun 2000; 

Cheng, Jiang et al. 2001):  
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•  Hue is invariant to certain types of highlights, shading, and shadows; 

•  The segmentation is performed on only one dimension and results of segmentation 

have fewer segments than using RGB. 

 

                      

 

 

 

 

 

 

 

 

Figure  9.4: HSV color space. 

In the HSV color space, Hue and value are the most important ones. Although the authors 

of (Cheng and Sun 2000) utilized both hue and intensity to segment color images, they 

segmented color images in one-dimensional intensity subspace and then, hierarchically, 

segmented the results (from the segmentation in the intensity subspace) in the hue 

subspace. Thus it is easy to over-segment the image.  In this chapter, we apply the mean 

shift algorithm in hue-value two-dimensional subspace (both hue and intensity are 

considered simultaneously in our method). The hue and value are scaled so that they range 

from 0 to 255.  

One thing worth mentioning is the cyclic property of the hue component. Because the hue 

is a value of angle, it has this cyclic property. The cyclic property of the hue will be 

considered in the mean shift algorithm and in classifying pixels to clusters (see section 

 9.3.2 and  9.3.3). 
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9.3.2 Considering the Cyclic Property of the Hue Component in the Mean Shift 

Algorithm 

Because the hue is a value of angle, the cyclic property of the hue must be considered in 

the mean shift algorithm. The revised mean shift algorithm can be written as: 

xX
n xSX

i
x hi

−≡ ∑
∈ )(
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'
h

'

1 (x)M                ( 9.12) 

where the converging window center x is a vector of [H, V],  
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When translating the search window, let xk+1=[Hk+1,Vk+1]. We have:  

      

                                              

                                                                                          and                                                                   

( 9.13) 

 

9.3.3 The Proposed Segmentation Method for Color Images 

Although the mean shift algorithm has been successfully applied to clustering (Cheng 

1995; Comaniciu and Meer 1999b), image segmentation (Comaniciu and Meer 1997; 

Comaniciu and Meer 2002a), etc., it mainly considers global color information, while 

neglecting local homogeneity. In this chapter, we introduce a measure of local 

homogeneity (Cheng and Sun 2000) into the mean shift algorithm. The proposed method 
















>−

<+

≤≤

=

∑∑

∑∑

∑∑

∈∈

∈∈

∈∈

+

2551,2551

01,2551 

25510,1 

)(
'

)(
'

)(
'

)(
'

)(
'

)(
'

1

''

''

''

khikkhik

khikkhik

khikkhik

HSH
i

xHSH
i

x

HSH
i

xHSH
i

x

HSH
i

xHSH
i

x

k

H
n

ifH
n

H
n

ifH
n

H
n

ifH
n

H
'

1 '
( )

1

i h kk

k i
V S Vx

V V
n+

∈

= ∑



 176

considers both global information and local homogeneity information as explained in the 

next section.  

9.3.3.1 Local Homogeneity 

In (Cheng and Sun 2000), a measure of local homogeneity has been used in one-

dimensional histogram thresholding. The homogeneity consists of two parts: the standard 

deviation and the discontinuity of the intensities at each pixel of the image.  The standard 

deviation Sij at pixel Pij can be written as: 

( 9.14) 

where mij is the mean of nw intensities within the window Wd(Pij), which has a size of d by 

d and is centered at Pij.   

A measure of the discontinuity Dij at pixel Pij can be written as: 

22
xij G D yG+=                    ( 9.15) 

where Gx and Gy are the gradients at pixel Pij in the x and y direction.  

Thus, the homogeneity Hij at Pij can be written as:  

( 9.16) 

From equation ( 9.16), we can see that the H value ranges from 0 to 1. The higher the Hij 

value is, the more homogenous the region surrounding the pixel Pij is.  

In (Cheng and Sun 2000), the authors applied this measure of homogeneity to the 

histogram of gray levels. Here, we will show that the local homogeneity can also be 

incorporated into the popular mean shift algorithm.  

9.3.3.2 Color Image Segmentation Method 

Our proposed method mainly consists of three parts:  

2
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•  Map the image to the feature space considering both global color information and 

local homogeneity. 

•  Apply the revised mean shift algorithm (section  9.3.2) to obtain the peaks. 

•  Post-processing and assign the pixels to each cluster. 

The details of the proposed method are: 

1.  Map the image to the feature space. 

We first compute the local homogeneity value at each pixel of the image. To calculate the 

standard variance at each pixel, a 5-by-5 window is used. For the discontinuity estimation, 

we use a 3-by-3 window. Of course, other window sizes can also be used. However, we 

find that the window sizes used in our case can achieve better performance and 

computational efficiency.  

After computing the homogeneity for each pixel, we only use the pixels with high 

homogeneity values (near to 1.0) and neglect the pixels with low homogeneity values. We 

map the pixels with high homogeneity values in the hue-value two-dimensional space. 

Thus, both global and local information are considered.  

2. Apply the mean shift algorithm to find the local high-density modes. 

We randomly initialize windows (many enough) in HV space, with radius h. When the 

number of data points inside the window is large, and when the window center is not too 

close to the other accepted windows, we accept the window. After the initial window has 

been chosen, we apply the mean shift algorithm considering the cyclic property of the hue 

component to obtain the local peaks.  

3. Validate the peaks and label the pixels.  
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After applying the mean shift algorithm, we obtain a lot of peaks. Obviously, these peaks 

are not all valid. We need some post-processing to validate the peaks.  Thus we do the 

following step. 

•  Eliminate the repeated peaks. Because of the limited accuracy of the mean shift, the 

same peak obtained by the mean shift may not be at the exact same location. Thus, 

we remove the repeated peaks that are very close to each other (e.g., their distance 

is less than 1.0). 

•  Remove the small peaks related to the maximum peaks. Because the mean shift 

algorithm only finds the local peaks, it may stop at small local peaks.  

•  Calculate the normalized contrast using equation ( 9.11). Remove the smaller one of 

the two peaks if the normalized contrast is small.  

4. After obtaining the validated peaks, we assign pixels to their nearest clusters. In this 

step, the cyclic property of the hue component will again be considered. The distance 

between the i’th pixel to the j’th cluster is: 

( ) 22
255,min(),( jiijji VVHHHHjiDist −+−+−= α              ( 9.17) 

where α is a factor to adjust the relative weight of the hue component over the value 

component. 

The authors of (Zhang and Wang 2000) employed the k-means algorithm to segment the 

image. The disadvantage of such an approach is the requirement that the user must specify 

the number of the clusters. In comparison, the proposed method is unsupervised in that it 

needs no priori knowledge about the number of the clusters. We illustrate with the 

experiments in the next section. 

9.3.4 Experiments on Color Image Segmentation 

In this section, we test our color image segmentation method on natural color images.  
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In Figure  9.5, part of the procedures of the proposed method is illustrated and final 

segmentation results are given.  Figure  9.5 (a) includes the original image “home”. The 

points in HV space are displayed in Figure  9.5 (b) (no validation of local homogeneity) and 

(c) (after validation of local homogeneity). The tracks of the mean shift in HV space, with 

different initializations, are included in Figure  9.5 (d). The blue lines are the traces of the 

mean shift procedures; green dots are the centres of the converged windows by the mean 

shift procedures; and the red circles are the final peaks after validation. Figure  9.5 (e) gives 

the final segmentation results by the proposed method. From Figure  9.5 (e), we can see that 

our method obtains good segmentation results. The tree, the house, the roof, and the rim of 

the curtain and the house are all segmented out separately. The curtain and the sky are 

segmented to the same cluster. This is because the color of the curtain is blue, which is 

similar to the color of sky.  From the point of view for color homogeneity, this result is 

correct.  

 

 
 
 
 
 

  (a)            (b)             (c) 

 

 

 

 

 

 

      (d)               (e) 

Figure  9.5: (a) the original image “home”; (b) The hue-value feature space without 

considering local homogeneity; (c) The hue-value feature space considering local 

homogeneity; (d) procedures and results of the data decomposition by the mean shift 

algorithm with different initializations (e) the final results with seven colors obtained by 

the proposed method with h=9. 
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We also note that the grassland are segmented into two parts: on one hand, one can say the 

method over-segments the grassland because they both belong to the grassland; on the 

other hand, one can say the method correctly segment the grassland because the grassland 

can be seen to have different color. This again demonstrates that there is no unique solution 

to image segmentation.  

In Figure  9.6 and Figure  9.7, we compare the proposed method with a method employing a 

similar scheme but without considering the local homogeneity and the cyclic property of 

the hue component 

 

 

 
 
 
 
 
 

                  (a)              (b)                          (c) 

Figure  9.6: (a) the original image “Jelly beans”; (b) the final results with five colors 

obtained by the proposed method with h=7; (c) the results with seven colors without 

considering the local homogeneity and the cyclic property of the hue (h=7).  

 

 

 

 

 

 

  (a)               (b)                          (c) 

Figure  9.7: (a) the original image “Splash”; (b) the final results with three colors obtained 

by the proposed method with h=7; (c) the results with six colors without considering the 

local homogeneity and the cyclic property of the hue (h=7). 
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From Figure  9.6, we can see that the method which considers no the local homogeneity, 

nor the cyclic property of the hue component, over-segments the image of “Jelly beans” 

into seven colors; the blue beans fall into two clusters; part of the red beans are wrongly 

assigned to the black beans.  In contrast, the proposed method correctly segments the “Jelly 

beans” images into five colors (four colors from beans and one color from background).  

In Figure  9.7, we can see that the method without considering the local homogeneity and 

the cyclic property of the hue component over-segments the image of “Splash”.  The red 

background falls into two clusters; also, some pixels of the red background are wrongly 

assigned to the object in the image. In contrast, the proposed method considering the local 

homogeneity and the cyclic property of the hue component obtains good results. The image 

is effectively compressed to three colors.  

9.4 Conclusion 

The mean shift (MS) method is well known and popular: yet its sensitivity to false local 

peaks is virtually unrecognized. In this chapter, we analyse the influence of false peak 

noise on the MS and MSV method, in particular, we show how the occurrence of the false 

peaks is related to the bandwidth of the kernel density estimator (i.e., false peaks appear 

only when equation ( 9.9) is satisfied). Our analysis was carried out for the Epanechnikov 

kernel, which is not differentiable at its borders. It would be interesting to investigate the 

influence on false peaks if a Gaussian kernel, which is differentiable, is used in the mean 

shift method.  

A novel unsupervised false-peak-avoiding peak-valley sliding algorithm for image 

segmentation is also presented in this chapter. We use the MS method to find peaks and the 

MSV method to find valleys. The peaks and valleys are alternatively found one by one. 

After validating the obtained peaks and valleys, we use the validated valleys as density 

thresholds to segment the image.  

The “peak-valley sliding method” for identifying modes and anti-modes, is of interest in its 

own right. Moreover, the application of this method to automatically threshold multi-
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modal gray-level images may also be of independent interest, as the method does not 

require the priori knowledge of the number of the peaks and valleys and it is 

computationally effective. This part of work inspired us to present the robust Two-Step 

Scale (TSSE), the Adaptive-Scale Sample Consensus (ASSC), and the Adaptive-Scale 

Residual Consensus (ASRC) estimators in chapter  7 and chapter  8. 

We also propose a novel color image segmentation method. We employ the concept of 

homogeneity, and the mean shift algorithm, in our method. Thus the proposed method 

considers both local and global information in segmenting the image into homogenous 

regions. Although (Comaniciu and Meer 2002a) used the joint spatial-range and color 

space to exploit local property of image data, the dimension of the space in that method is 

very high (2 for spatial-range and 3 for color space). We segment the image in the hue-

value two-dimensional feature space. Thus, the computational complexity is reduced, 

compared with the methods that segment image in LUV or RGB three-dimensional feature 

space. The cyclic property of the hue component is considered in the mean shift procedures 

and in the labelling of the pixels of the image. Experiments show that the proposed method 

achieves promising results for natural color image segmentation.  
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10. Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

Because of the presence of multiple structures in the image, we need approaches that are 

robust to (pseudo)-outliers in the sense of having a high breakdown point. Established 

techniques, in use, that meet this criterion are based upon random sampling: e.g., Least 

Median of Squares, Least Trimmed Squares, and RANSAC. Random sampling techniques 

aim to explore the search space of possible solutions well enough to have at least one 

candidate which is determined solely by inliers (to a single structure in the data).  

However, since one doesn’t have an “oracle” to tell us which of the candidates are 

unpolluted by outliers; we require some form of model/fit scoring. In Least Median of 

Squares, this is obviously the median of the residuals. In RANSAC, it is the number of 

data residuals inside a certain bound. Of course, each form of model scoring has potential 

weaknesses. In Least Median of Squares, the median of the residuals of the entire data set 

(with respect to the candidate model) will obviously not be a good measure if the inliers to 

that model contain less than 50% of the total data. Generalizing to the k’th other statistic 

(rather than the Median) is one way out of this dilemma but now one either has to know in 

advance what value of k to use, or one has to attempt some form adaptation e.g., ALKS 

(which will perhaps be costly and limited in reliability). 

1.1.9.  Chapter 10 

Conclusion and Future Work 
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Even still, it is overly optimistic to expect a single statistic (the k-th order residual, for 

Least Median of Squares and ALKS; or the number of inliers within a certain bound, for 

RANSAC) to be an entirely reliable/informative measure of the quality of a solution.  

This observation has leaded us to seek alternative ways of scoring candidate models, so 

that greater robustness may be achieved. An early attempt (Wang and Suter 2002b; Wang 

and Suter 2003a) employed possible symmetry in the data set as one such statistic: though 

somewhat limited in versatility, such an approach definitely restores robustness in 

situations where standard Least Median of Squares will break down. Our recent estimators 

seek to use more information from the residual distribution. In particular, we have used 

Kernel Density estimation and Mean Shift Techniques  (Wang and Suter 2002a; Wang and 

Suter 2003b; Wang and Suter 2003c) to formulate model fit scores that lead to empirically 

observed higher breakdown points than all existing methods. The scale of inliers can be an 

important factor that decides the performance of a robust estimator. Thus, our more recent 

methods (Wang and Suter 2003d; Wang and Suter 2003g) consider both the shape 

distribution of the residuals of inliers and the scale of inliers in formulating model fit 

scores.  

In the work carried out in pursuit of this thesis, several novel ideas and methods/techniques 

were developed, and many of which resulted in publications (Wang and Suter 2002a; 

Wang and Suter 2002b; Suter, Chen et al. 2003; Wang and Suter 2003a; Wang and Suter 

2003b; Wang and Suter 2003c; Wang and Suter 2003d; Wang and Suter 2003e; Wang and 

David 2003f; Wang and Suter 2003g; Suter and Wang 2004; Wang and Suter 2004) and 

five technical reports. 

In summary, the main contributions of this thesis to the computer vision and pattern 

recognition community are: 

1 We illustrate and analyze situations where LMedS and LTS to fail to correctly fit 

the data in the presence of clustered outliers. We introduce the concept of 

symmetry distance (SD) into model fitting, and propose a novel symmetry-based 

method—the Least Trimmed Symmetry Distance (LTSD) and apply it to model 

fitting. 
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2 We apply nonparametric density estimation and density gradient estimation 

techniques (the mean shift method) in parametric estimation, and provide a novel 

estimator, Maximum Density Power Estimator (MDPE), which can usually tolerate 

more than 85% outliers. 

3 We modify the MDPE to produce a quicker version—Quick MDPE. Based on 

QMDPE, we propose a complete and model-based algorithm for range image 

segmentation.  

4 We develop the QMDPE to produce variable bandwidth QMDPE (vbQMDPE) and 

apply it to robust optical flow calculation. 

5 We investigate robust scale estimation and propose a novel and effective robust 

scale estimator: Two-Step Scale Estimator (TSSE). 

6 We propose, by employing TSSE in a RANSAC like procedure, a highly robust 

estimator: Adaptive Scale Sample Consensus (ASSC) estimator. We apply ASSC 

to two important computer vision tasks: range image segmentation and fundamental 

matrix estimation. 

7 We modify ASSC to produce ASRC (Adaptive Scale Residual Consensus), by 

which better achievements can be obtained.  

8 We show how the occurrence of the false peaks is related to the bandwidth h of the 

kernel density estimator, and provide a quantitative relationship between the 

appearance of false peaks and the value of h. We also provide a complete false-

peak-avoiding algorithm for gray-level image segmentation 

9 We propose a new algorithm of color image segmentation considering both global 

information and local homogeneity.  

10 We carry out a large number of experimental comparisons on both synthetic and 

real data. The results show the attractive advantages of our methods and provide a 

useful reference for the work of others in the future.  
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Limitations and future work: 

Finally, we must remark on the shortcomings of the approaches we are hereby promoting. 

From a theoretical point of view, a lot remains to be studied. Though we promote our 

schemes in terms of “breakdown point”, we acknowledge a number of issues in respect of 

this. We have not formally defined “breakdown point”; nor, consequently, have we in a 

way attempted to prove attainment of a high breakdown point. In these respects, our 

approach is intuitive and empirical.  

However, we trust, despite these shortcomings, the technique we have described will be of 

use to the computer vision community (and wider) as the basis of proven practical methods 

which can be refined, and whose theoretical underpinnings can be explored. 

Even though most of the contributions of this thesis in term of new robust estimation lead 

to, in general purpose, methods/techniques that could be applied to many computer vision 

problems which can be formulated in a model fitting paradigm, for historical reasons (and 

limited time), we have not completed a uniform application to all problems investigation 

(e.g., we did not apply MDPE to fundamental matrix estimation).  It would be interesting 

and useful to investigate such work in the future.  

This thesis concentrates on the robust regression scheme including LMedS, RANSAC, etc. 

It does not employ the total least squares (TLS) scheme, nor does it use the geometric 

fitting (Kanatani 1996). It would be beneficial to explore the contributions of this thesis in 

such a framework. 
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