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Abstract
In this paper, we propose a novel adaptive deep disturbance-disentangled learning (ADDL) method for effective facial expres-
sion recognition (FER). ADDL involves a two-stage learning procedure. First, a disturbance feature extraction model is
trained to identify multiple disturbing factors on a large-scale face database involving disturbance label information. Second,
an adaptive disturbance-disentangled model, which contains a global shared subnetwork and two task-specific subnetworks,
is designed and learned to explicitly disentangle disturbing factors from facial expression images. In particular, the expres-
sion subnetwork leverages a multi-level attention mechanism to extract expression-specific features, while the disturbance
subnetwork embraces a new adaptive disturbance feature learning module to extract disturbance-specific features based on
adversarial transfer learning. Moreover, a mutual information neural estimator is adopted to minimize the correlation between
expression-specific anddisturbance-specific features. Extensive experimental results on both in-the-labFERdatabases (includ-
ing CK+, MMI, and Oulu-CASIA) and in-the-wild FER databases (including RAF-DB, SFEW, Aff-Wild2, and AffectNet)
show that our proposed method consistently outperforms several state-of-the-art FER methods. This clearly demonstrates the
great potential of disturbance disentanglement for FER. Our code is available at https://github.com/delian11/ADDL.
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1 Introduction

Facial expression conveys nonverbal cues and plays a funda-
mental role in understanding emotions in human interaction
and communication. During the past few decades, facial
expression recognition (FER) has attracted increasing atten-
tion in computer vision due to its variety of applications in
entertainment, sociable robotics, data-driven animation, and
so on (Zhang et al., 2018a, b). Recently, with the consider-
able development of deep learning, FERhasmade substantial
progress (Chang et al., 2019; Chen et al., 2020; Dapogny
et al., 2018; Kollias et al., 2020a; Li & Deng, 2019; Li et al.,
2017; Meng et al., 2017; Yang et al., 2018a; Yan et al., 2020;
Zhang et al., 2018c).

Despite great progress, FER is still a challenging task.
On the one hand, facial expression images exhibit large
inter-class similarities and intra-class variances caused by
the existence of multiple disturbing factors. For example, in
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(a) (b)

Fig. 1 Some facial expressions of a in-the-lab images [the images are
from the CK+ database (Lucey et al., 2010)] and b in-the-wild images
[the images are from the SFEW database (Dhall et al., 2011)]

each row of Fig. 1a, the images of different expressions are
visually similar due to the same illumination and identity.
Meanwhile, in the two rows of Fig. 1b, the images of the
same expression show great differences because of changes
in gender, age, race, identity, illumination, and pose. Clearly,
these disturbing factors adversely affect the extraction of
expression-specific features. On the other hand, different
FER databases may involve different types of disturbing
factors. For instance, some in-the-lab FER databases only
include disturbances caused by variations in identity, age,
and gender but not pose, as shown in Fig. 1a, while some
in-the-wild FER databases may suffer from severe identity,
illumination, and pose variations, as given in Fig. 1b.

It is of great importance to properly disentangle disturb-
ing factors from facial expression images for FER. A variety
of deep learning-based FER methods (Rifai et al., 2012; Liu
et al., 2018; Mollahosseini et al. 2016; Hu et al., 2017; Wang
et al., 2020c) have been proposed to implicitly reduce the
disturbance for recognizing facial expressions. The train-
ing of these methods typically relies on a large amount of
labeled data to achieve satisfactory performance. However,
many FER databases contain only limited labeled training
data. As a result, it is not a trivial task to learn robust deep
models that can effectively alleviate the influence of various
disturbing factors in the case of limited training data.

To date, some disturbance-disentangled-based FERmeth-
ods (Meng et al., 2017; Zhang et al., 2020b; Chen et al., 2018;
Zhang et al., 2018b; Yang et al., 2018b), which explicitly dis-
entangle disturbing factors, have been developed. Note that
many FER databases only provide labels of facial expression
and identity (or pose) since manually labeling various dis-
turbing factors is time-consuming and labor-intensive. As a
consequence, these methods are only able to disentangle one
or two disturbing factors for FER, leading to suboptimal per-
formance.Moreover, theymay not workwell when the labels
of disturbing factors are not available in the FER databases.

Fortunately, some large-scale face databases provide a
largenumber of facial images togetherwith the label informa-
tion for different disturbing factors. For example, Multi-PIE
(Gross et al., 2010) offers labels of identity, pose, and illumi-
nation. RAF-DB (Li et al., 2017) gives labels of gender, race,
and age. Therefore, how to effectively exploit these large-
scale disturbance-labeled face databases to perform transfer
learning for classifying expressions in disturbance-unlabeled
FER databases is a significantly rewarding research problem.

To address the above problems, we propose a novel adap-
tive deep disturbance-disentangled learning (ADDL)method
for FER. ADDL adaptively disentangles multiple disturb-
ing factors from facial expression images and effectively
extracts expression-specific features, building its success by
borrowing the strengths from both multi-task learning and
adversarial transfer learning.

The ADDL method involves a two-stage learning pro-
cedure: (1) training a disturbance feature extraction model
(DFEM)and (2) training an adaptive disturbance-disentangled
model (ADDM). Specifically, the DFEM is first trained to
identify multiple disturbing factors on a large-scale face
database. Second, based on the trained DFEM, the ADDM is
learned to remove the disturbance and extract discriminative
features for expression recognition.

In summary, the main contributions of our work are as
follows:

– We propose a novel ADDL method that contains two
crucial components (i.e., the DFEM and ADDM) for
effective FER. In particular, the knowledge in the
DFEM trained on the large-scale face database is effec-
tively transferred to the ADDM to classify expressions
in the disturbance-unlabeled FER database. Therefore,
the ADDL method is capable of simultaneously dis-
entangling multiple disturbing factors and capturing
expression-related information.

– We elaborately design two task-specific subnetworks in
the ADDM. For the expression subnetwork, we employ
a multi-level attention mechanism to extract expression-
specific features. For the disturbance subnetwork, we
adopt adversarial transfer learning to learn disturbance-
specific features. The two subnetworks are jointly trained
to exploit both spatial-aware and semantic-aware infor-
mation.

– We extensively evaluate the proposed ADDL on both
in-the-lab and in-the-wild FER databases. Experimen-
tal results from these databases show that our proposed
method performs favorably against several state-of-the-
art FER methods.

This paper is a substantial extension of our previous con-
ference work in Ruan et al. (2020). The method in our
previous work has twomain limitations. First, it cannot adap-
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tively choose the disturbing factors when trained on an FER
database. Second, disturbance disentanglement is not explic-
itly performed. This paper alleviates these limitations in two
aspects: (1) an adaptive disturbance feature learning mod-
ule (ADFL) is designed to learn the importance weights
corresponding to different disturbing factors and then per-
form adversarial transfer learning; (2) a mutual information
neural estimator (MINE) is leveraged to minimize the corre-
lation between expression-specific and disturbance-specific
features.

To summarize, we have added the following new signifi-
cant contributions:

– We design the ADFL to greatly facilitate the extraction
of disturbance-specific features by considering differ-
ent influences of disturbing factors in the FER training
database. In this way, the characteristics of the FER
database can be taken into account to choose the dis-
turbing factors, and thus adaptive disturbance-specific
features are extracted.

– We adopt the MINE during the training of the ADDM.
Thus, we are able to effectively enhance the explicit dis-
entanglement between expression-specific and
disturbance-specific features for better FER.

– Based on the above two extensions, the proposed ADDL
method consistently achieves better recognition accuracy
than our previous method on both in-the-lab and in-the-
wild FER databases.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work. Section 3 introduces
the details of our proposed ADDL method. Section 4 pro-
vides experimental results on three popular in-the-lab FER
databases (CK+,MMI, andOulu-CASIA) and four challeng-
ing in-the-wild FER databases (RAF-DB, SFEW,AffWild-2,
and AffectNet). Finally, Sect. 5 presents the conclusion and
future work.

2 RelatedWork

In this section, we review state-of-the-art work of con-
volutional neural network (CNN)-based FER methods in
Sect. 2.1, disturbance-disentangled-based FER methods in
Sect. 2.2, action unit recognition in Sect. 2.3, and attention
mechanisms in Sect. 2.4, which are closely related to our
proposed method.

2.1 CNN-Based FERMethods

Currently, CNN-based FERmethods (Li&Deng, 2020) have
achieved promising performance due to the powerful capa-
bility of CNNs to capture high-level semantic information.

For example, Yu and Zhang (2015) develop an ensemble
of CNNs, which shows impressive results in the EmotiW
challenge. Mollahosseini et al. (2016) introduce a network
consisting of two convolutional layers and four inception lay-
ers (Szegedy et al., 2015) to predict facial expressions. Hu
et al. (2017) propose a supervised scoring ensemble (SSE)
method, where supervision signals are used not only for
deep layers but also for intermediate and shallow layers.
Liu et al. (2018) design a multi-channel pose-aware CNN
(MPCNN) to aggregate multi-scale features, which are fed
into a pose-aware recognition network for pose estimation
and pose conditioned expression recognition.

These CNN-based methods implicitly alleviate the influ-
ence of disturbances involved in facial expression images.
Generally, they rely heavily on a large number of labeled data
to learn effective feature representations. However, many
FER databases do not provide sufficient training data con-
taining diverse variations for different disturbing factors. As
a result, the trained CNN models may not be sufficiently
robust to handle various disturbing factors.

2.2 Disturbance-Disentangled-Based FERMethods

Somemethods have been proposed to explicitly perform dis-
turbance disentanglement for FER. For example, Meng et al.
(2017) introduce an identity-aware CNN (IACNN) method
to alleviate the variations caused by facial identity, where
an identity-sensitive contrastive loss is developed to learn
identity-related information. Wang et al. (2019) propose an
adversarial feature learning method to disentangle the distur-
bance caused by pose and identity.

Recently, generative adversarial networks (GANs) have
been widely used in pose-robust FER (Zhang et al., 2018b;
Wang et al., 2020d) and identity-robust FER (Chen et al.,
2018; Yang et al., 2018b). Zhang et al. (2018b, 2020a,
2020b) develop a GAN-based pose-invariant method for
facial image synthesis and expression recognition by exploit-
ing the relationship between different poses and expressions.
Furthermore, the disturbance caused by facial identity is
explicitly reducedby adversarial learning.Yang et al. (2018b)
propose an identity-adaptive method to learn an identity
subspace, which can generate different expressions while
preserving identity-related information for each individual.

The above methods require the labels of disturbing fac-
tors in the FER training databases. Unfortunately, many FER
databases only provide labels of facial expressions and some
facial attributes (such as identity and pose) but lack the label
information for other disturbing factors. Therefore, these
methods are only able to handle one or two disturbing fac-
tors. Moreover, they may fail on disturbance-unlabeled FER
databases.

Facial expression images are often intertwined with mul-
tiple disturbing factors (such as identity, pose, age, gender,
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and illumination). Hence, it is desirable to simultaneously
alleviate the influence of these disturbing factors. In this
paper, we capitalize on the disturbance label information
available in the large-scale face database to perform adver-
sarial transfer learning for expression recognition on the
disturbance-unlabeled FER database. This not only success-
fully addresses the problems of the lack of disturbance labels
and limited training data in theFERdatabase, but also enables
the proposed method to effectively disentangle different dis-
turbing factors from facial expression images.

2.3 Action Unit Recognition

Ekman and Friesen (1976) develop the facial action coding
system (FACS), which encodes atomic nonoverlapping facial
muscles called action units (AUs). Based on the FACS, facial
expressions can be viewed as combinations of certain AUs.

Some methods have been proposed to learn task-specific
representations for AU recognition. For example, Zhang et
al. (2018d) design an adversarial training framework (ATF),
which is trained by minimizing the AU loss and maximiz-
ing the identity loss. In this way, identity-invariant features
are extracted for AU detection. Li et al. (2019) propose
a twin-cycle autoencoder (TCAE) for AU detection in a
self-supervised manner. They factorize the movements into
AU-related and pose-related displacements based on a pair
of images. Therefore, facial action-relatedmovements can be
disentangled from head motion-related movements, which is
beneficial for learning discriminative AU-related features.
Sankaran et al. (2020) implicitly capture the correlations
between two modalities by using an encoder-decoder frame-
work to learn a unified representation for cross-modality AU
recognition.

The above methods perform disentanglement based on
multi-task learning CNN or an encoder-decoder structure.
Nevertheless, they take one or two disturbing factors into
account and do not fully consider the explicit disentangle-
ment between the AU-related movements and disturbing
factors.

2.4 AttentionMechanisms

In recent years, attention mechanism-based CNN methods
have been developed in a variety of tasks, such as fine-grained
image recognition (Fu et al., 2017; Hu et al., 2018), image
captioning (Xu et al., 2015), person re-identification (Wu
et al., 2018), and human pose estimation (Chu et al., 2017).
Hu et al., (2018) propose a novel architecture unit termed the
squeeze-and-excitation (SE) block, which adaptively recal-
ibrates channel-wise feature responses by modeling inter-
dependencies between channels. Chu et al. (2017) design a
multi-context attentionmechanism-basednetwork for human
pose estimation.

Psychological studies have revealed that salient facial
regions (such as the mouth, nose, and eyes) play a criti-
cal role in FER (Pantic & Rothkrantz, 2000). Meanwhile,
attention mechanisms have shown great capability to select
salient features. Therefore, attention mechanisms are bene-
ficial to improve the FER performance. For instance, Xie et
al. (2019a) propose a deep attentive multi-path CNN (DAM-
CNN) method for FER, where a spatial attention mechanism
is adopted to obtain salient regions. Wang et al. (2020c) pro-
pose a region attention network (RAN) to locate salient facial
regions for occlusion-invariant and pose-invariant FER. In
general, these methods leverage high-level semantic features
of CNNs for FER.

Both high-level and low-level features ofCNNs are advan-
tageous for performing FER. Low-level features capture the
spatial-aware informationof facial images,which canbeused
to determine the boundaries of salient regions. High-level
features encode the semantic-aware information of facial
images, which is desirable to locate salient regions (Zhao
& Wu, 2019). In this paper, unlike previous methods, we
employ amulti-level attention mechanism, which aggregates
the attentive features from different layers of the network.
This mechanism effectively exploits both spatial-aware and
semantic-aware information to extract discriminative fea-
tures for identifying facial expressions. Moreover, we lever-
age a self-attention layer to learn the importance weights
corresponding to different disturbing factors, enabling the
extraction of adaptive disturbance-specific features. There-
fore, we can accommodate the different influences of multi-
ple disturbing factors in the FER database.

3 ProposedMethod

In this section, we introduce our proposed ADDL method
in detail. First, an overview of the ADDL method is given
in Sect. 3.1. Then, the key components (the DFEM and
ADDM) ofADDLare described in Sects. 3.2 and 3.3, respec-
tively. Finally, some discussions about ADDL are presented
in Sect. 3.4.

3.1 Overview

The training phase of the ADDL method involves a two-
stage learning procedure: (1) training a DFEM to predict
various disturbing factors, and (2) training an ADDM, which
adapts to the characteristics of each FER database, to extract
expression-specific features by explicitly disentangling mul-
tiple disturbing factors from facial expression images. The
network architecture of our proposed ADDLmethod is illus-
trated in Fig. 2.

Specifically, in the first stage, a DFEM is trained to
simultaneously identify various disturbing factors on the
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Fig. 2 The network architecture of our proposed ADDL method. The
training phase of ADDL involves a two-stage learning procedure. a
Training a DFEM consisting of shared layers and task-specific layers.
The DFEM predicts various disturbing factors. b Training an ADDM

consisting of a global shared subnetwork (Sg), an expression subnet-
work (Se), and a disturbance subnetwork (Sd ). The ADDM extracts
expression-specific features by explicitly disentangling the disturbance

disturbance-labeled face database. In this manner, the DFEM
effectively captures the prior disturbance information. In the
second stage, based on the trained DFEM, an ADDM, con-
sisting of a global shared subnetwork and two task-specific
subnetworks (i.e., an expression subnetwork and a distur-
bance subnetwork), is learned to classify expressions on the
disturbance-unlabeled FER database.

In the ADDM, the expression subnetwork leverages a
multi-level attention mechanism to comprehensively extract
expression-specific features. Meanwhile, by taking advan-
tage of adversarial transfer learning, the disturbance subnet-
work capitalizes on the features extracted from the trained
DFEM to effectively learn adaptive disturbance-specific fea-
tures.

During the testing phase, given a facial image, only the
global shared subnetwork and expression subnetwork from
the trained ADDM are used to extract features and predict
facial expressions.

3.2 Disturbance Feature ExtractionModel (DFEM)

The DFEM is designed to extract discriminative features that
capture the information for identifying multiple disturbing
factors by taking advantage of multi-task learning on the
disturbance-labeled face database. As shown in Fig. 2a, the
network architecture of the DFEM consists of shared layers
and task-specific layers.

Specifically, facial images are first fed into several shared
layers consisting of a cascade of linear and nonlinear trans-
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formations to obtain high-level features. In this paper, we
adopt ResNet-18 (He et al., 2016), which is widely used
in previous works (Wang et al., 2020b), as shared layers.
Then, the task-specific layers use a multi-branch architec-
ture to extract features, where each branch containing two
cascaded fully-connected (FC) layers classifies a disturbing
factor. Note that the features obtained from the first FC layer
of each branch encode the information for predicting a dis-
turbing factor, while those from the second FC layer are the
predicted outputs.

Given a disturbance-labeled face database, its training set
Tl with R images is represented as Tl = {xli , yi }Ri=1, where
xli denotes the i th training image and yi = [y1i , . . . , yMi ]T is
an M-dimensional vector representing the labels of disturb-
ing factors corresponding to xli . M denotes the number of
disturbing factors. The optimization problem of the DFEM
is formulated as

argmin
wc,{w j }Mj=1

R∑

i=1

M∑

j=1

L j
CE (y j

i ,F j (xli ,wc,w j )), (1)

where the network parameter wc controls feature sharing
among all the disturbing factors and the network parame-
ter w j controls the update of features for the j th disturbing
factor; F j (·, ·, ·) represents the prediction function for the
j th disturbing factor, given the input xli and the network

parameters wc and w j ; y
j
i denotes the label of the jth dis-

turbing factor corresponding to xli ; and L j
CE (·, ·) represents

the cross-entropy (CE) loss between the ground-truth label
y j
i and the result estimated by F j . Mathematically, the CE
loss is defined as

L j
CE = −

K j∑

k=1

1[k=y j
i ] log(F j (xli ,wc,w j )), (2)

where log(·) represents the logarithm function; K j indicates
the category number of the j th disturbing factor; and 1[k=y j

i ]
outputs 1 when k = y j

i and 0 otherwise.

3.3 Adaptive Disturbance-DisentangledModel
(ADDM)

Based on the DFEM trained on the large-scale face database,
the ADDM is learned to model the expression-related
information and disturbance-related information on the
disturbance-unlabeled FER database. As shown in Fig. 2b,
the network architecture of the ADDM consists of a global
shared subnetwork, an expression subnetwork, and a distur-
bance subnetwork.

In the following, we introduce the key components of the
ADDM.

3.3.1 Global Shared Subnetwork

The global shared subnetwork (denoted Sg) is designed to
extract global shared features of input images. In this paper,
we employ ResNet-18 (He et al., 2016) as Sg , where the final
FC layer is removed.

3.3.2 Task-Specific Subnetworks

ADDM contains two task-specific subnetworks, i.e., an
expression subnetwork (denoted Se) and a disturbance sub-
network (denoted Sd ). Two subnetworks are jointly trained
based on Sg .

Expression Subnetwork Se is designed to learn expression-
specific features by applying attention blocks to Sg . Se
consists of a set of attention blocks (see Sect. 3.3.3), which
are followed by an average pooling layer and two FC lay-
ers. Here, the attention block generates a soft attention mask,
which indicates the importance of each position in the feature
map from Sg .

Considering that the features from different levels of
the network in Se are complementary, a multi-level atten-
tion mechanism is employed to fully exploit these features.
Specifically, we first utilize several max pooling layers to
ensure the same sizes of feature maps from different atten-
tion blocks (except for the last two blocks) since the sizes
of feature maps vary from layer to layer. Then, these resized
feature maps are concatenated as

aout = [âe1; . . . ; âeL−2; aeL−1; aeL ], (3)

where aej indicates the feature map from the j th attention
block in Se; â

e
j represents the output feature map of the max

pooling layer corresponding to aej ; L denotes the number of
attention blocks; and aout is the final combined feature map.

Note that, as shown in Fig. 2, the max pooling layer is not
applied to aeL−1 and aeL to ensure the same sizes of feature
maps for concatenation. In this way, both low-level spatial
features and high-level semantic features are aggregated to
extract expression-specific features.

Given a disturbance-unlabeled FER database, its training
set Tu with N images is represented as Tu = {xui , yi }Ni=1,
where xui denotes the i th training image and yi indicates
the expression label corresponding to xui . Se optimizes the
following problem:

argmin
wg,we

N∑

i=1

LCE (yi ,Fe(xui ,wg,we)), (4)

where wg and we denote the network parameters in Sg and
Se, respectively;Fe denotes the prediction function; andLCE
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indicates the CE loss between the ground-truth expression
label yi and the predicted result byFe, which is expressed as

LCE = −
K∑

k=1

1[k=yi ] log(Fe(xui ,wg,we)), (5)

where K is the number of expression categories.

Disturbance Subnetwork Sd is designed to learn
disturbance-specific features. To achieve this, a straightfor-
ward way is to generate pseudo-labels of disturbing factors
in the FER database by applying the trained DFEM and then
train Sd with these pseudo-labels. However, these pseudo-
labels unavoidably involve a large number of noisy labels
due to the discrepancy between the source domain (the face
database used to train the DFEM) and the target domain (the
FER database used to train Sd ). As a result, these noisy labels
seriously affect the extraction of disturbance-specific fea-
tures, thereby reducing the final FER performance.

In this paper, we take advantage of adversarial transfer
learning to effectively improve the performance of the model
in the unlabeled target domain, given the labeled source
domain. Mathematically, we constrain the distributions of
the output feature maps from Sd to be as close as those from
the trained DFEM. Such a manner alleviates the domain dis-
crepancy and avoids labeling disturbing factors in the target
domain.

The network architecture of Sd is given in Fig. 2b. It is
comprised of a set of attention blocks, which are followed
by an average pooling layer, an FC layer, and an adaptive
disturbance feature learning module (ADFL), where the FC
layer extracts disturbance-specific features and the ADFL
performs adversarial transfer learning between disturbance-
specific features and weighted disturbing factor features.

The network architecture of the ADFL is shown in Fig. 3.
The ADFL consists of a self-attention (SA) layer (including
an FC layer and a sigmoid layer), a feature fusion layer, and
a discriminator.

We suppose that the extracted disturbance-specific feature
is denoted fd , given a facial image from the disturbance-

unlabeled FER database. First, the SA layer outputs the
importance weights (represented as [α1, · · · , αM ]T) corre-
sponding to M disturbing factors. These importance weights
reflect the different influences of disturbing factors in the
FER training database. Meanwhile, we also obtain a set of
disturbing factor features extracted from the first FC lay-
ers of task-specific layers in the trained DFEM, denoted
Tp = {f pj }Mj=1. Here, f

p
j represents the j th disturbing fac-

tor feature.
Then, the feature fusion layer combines these disturbing

factor features according to their corresponding importance
weights, which can be expressed as

fm =
M∑

j=1

α j f
p
j , (6)

where fm represents the weighted disturbing factor feature.
Finally, a discriminator D (consisting of four FC layers

and a leakyReLU function) is introduced to play an adversar-
ial gamewith a feature extractor F .Here, the feature extractor
F refers to the layers used to extract fd in Sd . F tries to min-
imize the divergence of the feature distributions between fd

and fm , while D aims to distinguish fd from fm . The objective
of adversarial training is formulated as

min
D

max
F

LAD(F, D), (7)

where the adversarial loss LAD is defined as

LAD = −E[log(D(fm))] − E[log(1 − D(fd))]. (8)

To facilitate knowledge transfer from the trained DFEM
to Sd , it is natural that the distributions of both the final out-
put features and the intermediate attention maps from Sd
are close to those from the trained DFEM. Therefore, we
also apply attention transfer (Zhang et al., 2018a), which has
been proven to be effective in bridging the gap between the
source domain and the target domain, by transferring atten-
tion knowledge. The attention transfer loss is expressed as

LAT =
L∑

j=1

|| qdj
||qdj ||2

− qp
j

||qp
j ||2

||2, (9)

where qdj and q
p
j are the j th attention maps from Sd and the

trained DFEM in the vectorized forms, respectively.
Asmentioned previously, each FERdatabase involves cer-

tain types of disturbing factors. In the ADFL, the SA layer
estimates the importance weights corresponding to different
disturbing factors based on fd , while the feature fusion layer
outputs fm based on these importance weights. Therefore,
fm incorporates the prior disturbance information that con-
siders the characteristics of the FER database. For instance,
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the prior pose information does not greatly contribute to the
extraction of fm for the in-the-lab FER database (since the
importance weight corresponding to pose is low in this case),
while it is encoded in fm for the in-the-wild FER database.
By performing adversarial transfer learning, the distributions
of fm and fd are as similar as possible. Hence, we are able
to effectively extract adaptive disturbance-specific features,
which approximate a linear combination of disturbing factor
features from the trained DFEM, by exploiting the knowl-
edge of the FER database.

In the SA layer, the importance weight reflects the influ-
ence of a disturbing factor. To explain this, we take a simple
example for illustration. Assume that we have an FER train-
ing database only involving identity variations and that α1

corresponds to the importance weight of the identity. In other
words, all the images in this FER database are captured with
the same gender, age, race, illumination, and pose. Thus, the
first disturbing factor features (i.e., f p1 corresponding to iden-
tity) of different images in the FER database significantly
vary, while the others (i.e., {f p2 , . . . , f pM }) show small vari-
ations. By minimizing the differences between fd and fm ,
α1 and α j ( j ∈ {2, · · · , M})) are assigned large and small
values, respectively. Accordingly, the joint loss function [see
Eq. (14)] can be gradually optimized. Otherwise, (i.e., α1

is small while α j ( j ∈ {2, . . . , M})) is large), the weighted
disturbing factor features [see Eq. (6)] are similar for all the
images. In such a case, the disturbance subnetwork fails to
extract effective information, and thus disturbance disentan-
glement cannot be properly performed. Therefore, the value
of α1 reflects the influence of identity.

Note that the multi-level attention mechanism is not used
in Sd . This is because the salient regions for identifyingmulti-
ple disturbing factors are different. For example, illumination
estimation mainly relies on the global facial region, while
pose classification focuses on local regions around salient
facial landmarks. In other words, it is not appropriate to
directly concatenate low-level spatial features and high-level
semantic features to extract disturbance-specific features in
Sd .

3.3.3 Attention Block

Inspired by Liu et al. (2019), we develop an attention block
for both Sd and Se. The network architecture of the attention
block is given in Fig. 4.

The first attention block in Se or Sd takes the feature u1
from the first convolution block in Sg as the input. For the
subsequent attention block at the j th layer, the element-wise
weighted addition between the global feature u j from Sg and
the task-specific feature atj−1 (t ∈ {e, d}) from the previous
layer in St (t ∈ {e, d}) is taken as the input, as shown in
Fig. 4. Then, the attention mask mt

j (t ∈ {e, d}) generated
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Fig. 4 The network architecture of the attention block

from the j th layer in St (t ∈ {e, d}) is expressed as

mt
j =

{
g(u j ), j = 1,

g(δ1u j + δ2atj−1), j ≥ 2,
(10)

where δ1 and δ2 are the learnable parameters that, respec-
tively, determine the importance of the global feature u j

and the task-specific feature atj−1; g(·) denotes the aggrega-
tion of a batch normalization (BN) layer, a parametric ReLU
(PReLU) layer, a 1 × 1 convolutional layer, another batch
normalization layer, and a sigmoid layer that constrains the
output within the range of (0, 1).

The output feature map atj of the j th attention block for
St (t ∈ {e, d}) is given as

atj = h(mt
j � u j ), (11)

where ‘�’ denotes the element-wise multiplication; h(·)
denotes a convolutional layer with a 3×3 kernel that matches
the channels between the attention mask from the ( j − 1)th
layer in St (t ∈ {e, d}) and the global shared feature in the
j th layer in Sg , followed by a BN layer, a PReLU layer, and
a max pooling layer to match the sizes of the feature maps
between the above two features.

It is worth noting that our attention block outputs a 3D
attention mask, where each attention map in the mask cap-
tures salient regions for a feature channel in Sg . This is
different from the traditional attention block (Xie et al.,
2019a), which applies the same 2D mask to each feature
channel. Therefore, the attention block used in our paper
takes into account the differences between feature maps and
thus can generate more accurate attention weights.

3.3.4 Mutual Information Neural Estimator (MINE)

Toperformexplicit disentanglement between thedisturbance-
specific feature fd and the expression-specific feature fe,
the correlation between the two features should be mini-
mized. Generally, the Kullback–Leibler (K–L) divergence
DK L(PFd ||PFe) can be used to minimize the discrepancy
between two feature distributions. Here, Fd and Fe denote
the random variables of fd and fe, respectively. PFd and PFe

represent the marginal probability distributions of Fd and
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Fe, respectively. However, we cannot guarantee that the fea-
tures with dissimilar distributions are uncorrelated.

Inspired by Belghazi et al. (2018), we leverage mutual
information to measure the correlation between fd and fe

(note that if two variables are independent of each other,
their mutual information is zero). Specifically, we employ a
mutual information neural estimator (MINE) (Belghazi et al.,
2018) to estimate the mutual information between fd and fe,
leading to explicit disentanglement. Based on the K–L diver-
gence and the Donsker–Varadhan representation (Donsker &
Varadhan, 1983), themutual information can be estimated by
the MINE as

I (Fd ; Fe) = DK L(PFd Fe ||PFd ⊗ PFe )

≥ EPFd Fe
[Tθ (fd , fe)]

− log(EPFd ⊗PFe [eTθ (fd ,fe)]),
(12)

where ‘⊗’ is the product function; PFd Fe represents the joint
probability distribution of (Fd , Fe); and Tθ is a neural net-
work with parameters θ (the detailed architecture of Tθ is
described in Table 1a).

Given n mini-batch samples {fdi , fei }ni=1 from the joint

distribution andn samples {f̃ei }ni=1 from themarginal distribu-
tion of Fe (which can be estimated by shuffling the samples
from the joint distribution along the batch axis), the mutual
information loss LMI is approximated as

LMI = I (Fd; Fe)

≈ 1

n

n∑

i=1

Tθ (fdi , fei ) − log

(
1

n

n∑

i=1

eTθ (fdi ,f̃ei )

)
.

(13)

The correlation between fd and fe is minimized by opti-
mizing the mutual information loss LMI . Therefore, we are
able to disentangle the disturbance in an explicit way.

3.3.5 Joint Loss Function

The joint loss function of the ADDM is defined as

L = LCE + λ1LAD + λ2LAT + λ3LMI , (14)

where λ1, λ2, and λ3 denote the balanced parameters of the
adversarial loss, the attention transfer loss, and the mutual
information loss, respectively.

Byminimizing the joint loss function, theADDMis able to
extract discriminative expression-specific features for FER.

3.4 Discussions

A number of CNN-based FERmethods (Mollahosseini et al.
2016; Yu & Zhang, 2015) suffer from the problem that the

final expression features contain the disturbance because of
limited training data. Some disturbance-disentangled-based
FER methods (Zhang et al., 2018b; Meng et al., 2017)
may not accurately recognize expressions in the disturbance-
unlabeled FER database.

Different from traditional FER methods, the ADDL
method successfully leverages the available disturbance label
information from the large-scale face database to perform
adversarial transfer learning on the disturbance-unlabeled
FER database. In particular, by designing a disturbance
subnetwork and minimizing the mutual information, the dis-
turbance can be effectively and explicitly disentangled from
the features used for expression recognition. Such a manner
significantly improves the discriminability of expression-
specific features. Therefore, the problems due to limited
training data and the lack of disturbance labels can be greatly
alleviated. Moreover, the ADFL is developed to facilitate the
extraction of disturbance-specific features by fully exploit-
ing the different influences of disturbing factors in the FER
database.

4 Experiments

In this section, extensive experiments are conducted to show
the superiority of our proposed method. First, we introduce
several public FER databases and the implementation details
in Sects. 4.1 and 4.2, respectively. Then, we conduct ablation
studies to evaluate each component of our proposed method
in Sect. 4.3. Next, we compare our method with several
state-of-the-art FERmethods in Sect. 4.4. Finally, we present
the computational complexity of our method and apply our
method to valence and arousal estimation in Sects. 4.5 and
4.6, respectively.

4.1 Databases

To validate the effectiveness of the proposed method, we
evaluate the performance on three in-the-lab FER databases
[CK+ (Lucey et al., 2010), MMI (Valstar & Pantic, 2010),
and Oulu-CASIA (Zhao et al., 2011)) and four in-the-wild
databases (RAF-DB (Li et al., 2017), SFEW (Dhall et al.,
2011), Aff-Wild2 (Kollias &Zafeiriou, 2018), andAffectNet
(Mollahosseini et al. 2017)].
CK+: The Extended Cohn-Kanade (CK+) database is a com-
monly used laboratory-controlled database for evaluating the
FERperformance. It contains 327 video sequences annotated
with expression labels, including six basic expressions (i.e.,
angry, happy, surprise, sad, disgust, and fear) and one nonba-
sic expression (i.e., contempt). Each sequence shows a shift
from a neutral expression to a peak expression. We choose
the last three expressional frames from each sequence to con-
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Table 1 The detailed
architecture of the MINE and
each subnetwork in the ADDM

MINE Output dimensionality

(a) The architecture of the MINE

Concatenate1 256

FC(64), Leaky ReLU 64

FC(1), Leaky ReLU 1

The global shared subnetwork Sg Output dimensionality

(b) The architecture of the global shared subnetwork in the ADDM

Conv(64, 7, 2), BN, ReLU, Max pool(3,2) 64 × 56 × 56

Basic block(64), Basic block(64) 64 × 56 × 56

Basic block(128), Basic block(128) 128 × 28 × 28

Basic block(256), Basic block(256) 256 × 14 × 14

Basic block(512), Basic block(512) 512 × 7 × 7

The expression subnetwork Se Output dimensionality

(c) The architecture of the expression subnetwork in the ADDM

Attention block(64) 64 × 56 × 56

Max pool(10,7) 64 × 7 × 7

Attention block(128) 128 × 28 × 28

Max pool(8,3) 128 × 7 × 7

Attention block(256) 256 × 14 × 14

Max pool(2,2) 256 × 7 × 7

Attention block(512) 512 × 7 × 7

Attention block(512) 512 × 7 × 7

Concatenate2 1472 × 7 × 7

Avg pool(3) 1472 × 2 × 2

Flatten 5888

Dropout, FC(128), PReLU 128

Dropout, FC(K ), PReLU K

The disturbance subnetwork Sd Output dimensionality

(d) The architecture of the disturbance subnetwork in the ADDM

Attention block(64) 64 × 56 × 56

Attention block(128) 128 × 28 × 28

Attention block(256) 256 × 14 × 14

Attention block(512) 512 × 7 × 7

Attention block(512) 512 × 7 × 7

Avg pool(6) 512 × 1 × 1

Flatten 512

Dropout, FC(128), PReLU 128

FC(6), Sigmoid 6

Conv(n, m, s) denotes the convolutional layer with the number of output feature maps n, the kernel size m×m
and the stride s; Basic block (n) and Attention block (n), respectively, denote the basic block and the attention
block with the number of output feature maps n; Max pool (m,s) denotes the max pooling layer with m×m
filters and s strides; Concatenate1 denotes the concatenation of fd and fe in the MINE; Concatenate2 denotes
the concatenation of all the outputs of attention blocks in Se; Avg pool(m) denotes the average pooling layer
withm×m filters; FC(n) refers to the fully-connected layer with the output features of n dimensions; The value
of K refers to the number of classes; BN denotes a batch normalization layer; PReLU denotes a parametric
ReLU layer
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struct the training set and the test set, which contain 981
images in total.
MMI: The MMI database is composed of 30 subjects, for
which 205 image sequences captured in the frontal view are
labeled with six basic facial expressions. Similar to the CK+
database, we select the three peak expressional frames in
each sequence to compose the training set and the test set
(consisting of 615 images in total).
Oulu-CASIA: The Oulu-CASIA database contains videos
of 80 subjects. Each subject contains six basic expressions,
where each expression corresponds to a video sequence. The
videos are collected with two imaging systems (i.e., near-
infrared and visible light) under three different illumination
conditions. As done in Yang et al. (2018a), the last three
frames in each sequence captured with visible light and
strong illumination are used in our experiments, resulting
in a total of 1,440 images.
RAF-DB: The Real-world Affective Face database (RAF-
DB) is a real-world database that contains 15,331 images
labeledwith six basic facial expressions and a neutral expres-
sion,where 12,271 and3,068 images are used for training and
testing, respectively. In addition to the expression labels, the
images in RAF-DB are also labeled with the facial attributes
of age, gender, and race.
SFEW: The SFEW database is created by selecting the
static frames from the AFEW database, which covers uncon-
strained facial expressions, varied head poses, large age
range, varied focus, different resolutions of faces, and real-
world illumination. It provides 958 images for training and
436 images for testing. Each image is labeled with one of six
basic expressions or the neutral expression.
Aff-Wild2: The Aff-Wild2 database is extended from the
Aff-Wild database (Kollias et al., 2019), which consists of
558 YouTube videos with 2,786,201 frames. The videos
involve large variations in age, race, pose, illumination, and
so on. In this paper, we use the preprocessed version provided
by Zhang et al. (2020c) in theABAW2020 competition (Kol-
lias et al., 2020b),which contains 904,825 images for training
and 322,080 validation images for testing. All the images are
annotated with seven expression categories, as in RAF-DB
and SFEW.
AffectNet: The AffectNet database is a large-scale database
of facial emotions in the wild. It contains 450,000 facial
images from the Internet with both categorical (includ-
ing seven expressions) and valence-arousal annotations. For
FER, we select 283,901 images for training and 3500 valida-
tion images for testing, as done in Zeng et al. (2018),Wang et
al. (2019), Farzaneh and Qi (2021). For valence and arousal
estimation, we use all the images with valence-arousal anno-
tations, resulting in 320,739 images for training and 4,500
images for testing.

For in-the-lab databases, we employ the popular tenfold
cross-validation protocol for evaluation, as done in Meng et

al. (2017), Yang et al. (2018a), Zhao et al. (2016), Ding et
al. (2017). For in-the-wild databases, we follow the default
evaluation protocols provided by the databases.

4.2 Implementation Details

In this paper, we use ResNet-18 pretrained on theMS-Celeb-
1M database as the backbone (Wang et al., 2020b). The
dimensionalities of {f pj }Mj=1, f

d , and fe are 128. Table 1
illustrates the detailed architecture of the MINE and each
subnetwork in the ADDM, where the output dimensionality
of each layer is also given.

For all the databases, the face in each image is detected
and cropped according to the eye positions. Then, the facial
image is resized to the size of 256×256. During training, the
facial images are randomly cropped to the size of 224×224,
and the cropped images are further processed by using a hor-
izontal flip. For the Aff-Wild2 and AffectNet databases, the
oversampling strategy is used, as done inWang et al. (2020b).

Since five blocks are used in ResNet-18, L is set to five
in Eqs. (3) and (9). The values of λ1, λ2, and λ3 in Eq. (14)
are empirically set to 1.0, 0.10, and 0.0010, respectively. We
train the networks using the Adam algorithm (Kingma &
Ba, 2014) with a learning rate of 0.0001, β1 = 0.500, and
β2 = 0.999. The learning rate is further divided by 10 after
10, 18, 25, and 32 epochs. All our models are trained on
a single NVIDIA GTX 1080Ti GPU using PyTorch for 40
epochs, with a batch size of 16 for RAF-DB and AffectNet
and 8 for the other FER databases (except for Aff-Wild2).
For Aff-Wild2, our model is trained on two NVIDIA GTX
1080Ti GPUs for 40 epochs with a batch size of 64. For
computational complexity, we evaluate the inference time
and speed of our method by using a single NVIDIA GTX
1080Ti GPU.

The DFEM is trained on both the Multi-PIE face database
(Gross et al., 2010) and theRAF-DBdatabase, which provide
the labels of multiple disturbing factors. Note that large-
scale facial attribute databases (such as CelebA (Liu et al.,
2015)) are not used for training. This is because they do not
have labels of illumination and pose (which are not facial
attributes). Moreover, CelebA only contains binary facial
attributes (with and without), and thus, it cannot comprehen-
sively describe the variations of each attribute. In contrast,
Multi-PIE has labels of identity (337 individuals), pose (15
viewpoints), and illumination (19 lighting conditions), while
RAF-DB gives those of gender (3 classes), age (5 ranges),
and race (3 classes). Therefore, Multi-PIE and RAF-DB are
more suitable to train the DFEM. During the training of the
DFEM,missing labels of some disturbing factors are ignored
during back-propagation.

For the Aff-Wild2 database, we use the weighted average
of accuracy (33%) and F1 score (67%) as the evaluation met-
ric, as done in the ABAW 2020 competition (Kollias et al.,
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Table 2 Details of the three
baseline methods, six DDL
variants, and four ADDL
variants

Methods Sg Se Sd ADFL MI DFEM

w/o Multi Gen Age Race Id Ill Pose

Baseline � – – – – – – – – – – �
Baseline_at � � – – – – – – – – – �
Baseline_mat � – � – – – – – – – – �
DDL_g � – � � – – – – – – – �
DDL_ga � – � � � – – – – – – �
DDL_gar � – � � � � – – – – – �
DDL_gar&id � – � � � � � – – – – �
DDL_gar&id&il � – � � � � � � – – – �
DDL_gar&id&il&p � – � � � � � � � – – �
ADDL_ADFL � – � � � � � � � � – �
ADDL_MI � – � � � � � � � – � �
ADDL_MI-DFEM � – � – – – – – – – � –

ADDL � – � � � � � � � � � �

“w/o” and “Multi” represent training without and with the multi-level attention mechanism, respectively;
“Gen”, “Id” and “Ill” represent gender, identity, and illumination, respectively; and “MI” represents explicit
disentanglement using mutual information

2020b). For the other databases, we adopt the test accuracy
as the evaluation metric.

4.3 Ablation Studies

To show the superiority of the proposed method, we perform
extensive ablation studies to evaluate the influence of dif-
ferent components on the performance. In this subsection,
we use one in-the-lab database (MMI) and one in-the-wild
database (RAF-DB) for evaluation.

Specifically,we evaluate the performance of three baseline
methods, six DDL variants, and four ADDL variants. DDL
refers to our original method (Ruan et al., 2020) that does not
involve the ADFL and the MINE, while the ADDL method
is developed in this paper.

These methods are described as follows: (1) The baseline
method (denoted Baseline) that uses only Sg followed by two
FC layers to predict the expression of the input image. (2)
The baseline method with attention blocks (denoted Base-
line_at) that simultaneously uses Sg and Se, but does not use
the multi-level attention mechanism in Se. (3) The baseline
method with attention blocks (denoted Baseline_mat) that
simultaneously uses Sg and Se, and employs the multi-level
attentionmechanism in Se. (4) Themethod (denotedDDL_g)
that simultaneously uses Sg , Se, and Sd , where Sd is trained
based on the gender features extracted by the DFEM. (5)
The method (denoted DDL_ga) that is similar to DDL_g,
but where Sd is trained based on both the gender and age
features extracted by the DFEM. (6) The method (denoted
DDL_gar) that is similar to DDL_g, but where Sd is trained
based on the gender, age, and race features extracted by

the DFEM. (7) The method (denoted DDL_gar&id) that is
similar to DDL_g, but where Sd is trained based on the gen-
der, age, race, and identity features extracted by the DFEM.
(8) The method (denoted DDL_gar&id&il) that is similar
to DDL_g, but where Sd is trained based on the gender,
age, race, identity, and illumination features extracted by the
DFEM. (9) The method (denoted DDL_gar&id&il&p) that
is similar to DDL_g, but where Sd is trained based on the
gender, age, race, identity, illumination, and pose features
extracted by the DFEM. (10) The ADDL method (denoted
ADDL_ADFL) that only uses the ADFL. (11) The ADDL
method (denotedADDL_MI) that employs only theMINE to
perform explicit disentanglement between fd and fe, where
fd is learned using the DFEM as for the DDL_gar&id&il&p.
(12) The ADDL method (denoted ADDL_MI-DFEM) that
employs the MINE but without using the DFEM. (13) The
ADDL method that simultaneously uses the ADFL and the
MINE.

The details of these methods are summarized in Table 2.
For a fair comparison, the pretrained ResNet-18 is employed
for all the methods. Table 3 reports the recognition accu-
racy obtained by these methods on the MMI and RAF-DB
databases.

4.3.1 Posed versus Naturalistic Facial Expressions

Generally, in-the-lab FER databases contain posed facial
expressions, while in-the-wild databases are comprised of
naturalistic facial expressions. Posed expressions usually
have slow and jerky onsets, where facial actions typically do
not show peaks simultaneously (Motley & Camden, 1988).
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Table 3 The recognition accuracy (%) obtained by the three baseline
methods, six DDL variants, and four ADDL variants on the MMI and
RAF-DB databases

Methods MMI RAF-DB

Baseline 79.16 86.93

Baseline_at 81.22 87.45

Baseline_mat 81.47 87.61

DDL_g 82.88 87.97

DDL_ga 83.29 88.01

DDL_gar 83.70 88.07

DDL_gar&id 83.74 88.10

DDL_gar&id&il 84.25 88.14

DDL_gar&id&il&p 83.56 88.17

ADDL_ADFL 85.40 89.08

ADDL_MI 85.56 88.82

ADDL_MI-DFEM 83.13 88.01

ADDL 86.13 89.34

The best results are boldfaced

“Angry” “Surprise” “Disgust” “Fear” “Happy” “Sad”

(a) MMI

(b) RAF-DB

Fig. 5 Visualization of attentive feature maps on the a MMI and b
RAF-DB databases

In contrast, naturalistic expressions tend to exhibit fast and
smooth onsets, where distinct facial movements reach peaks
in a short duration. According to Table 3, compared with the
baseline, the accuracy gains obtained by the ADDL method
are 6.97% and 2.41% on the MMI and RAF-DB databases,
respectively. This shows the importance of disentangling dis-
turbance for both the posed and naturalistic FER, which
enables the extraction of effective expression-specific fea-
tures. Note that the recognition accuracy obtained by our
method on MMI is lower than that on RAF-DB. This can be
ascribed to the limited training set (note that there are 615
images inMMI), thereby increasing the difficulty of learning
a robust FER model.

4.3.2 Influence of the Attention Block andMulti-level
Attention Mechanism

As illustrated in Table 3, Baseline_at achieves better
recognition performance than the Baseline method on both

MMI and RAF-DB. Specifically, compared with Baseline,
Baseline_at achieves 2.06% and 0.52% gains in terms of
recognition accuracy on the MMI and RAF-DB databases,
respectively. The above results show the effectiveness of the
attention block.

Baseline_mat obtains higher recognition accuracy than
Baseline_at. Specifically, in comparison with Baseline_at,
Baseline_mat gets 0.25% improvements in terms of recogni-
tion accuracy on MMI. For RAF-DB, its accuracy is further
improved by 0.16%. This verifies the effectiveness of the
multi-level attention mechanism.

To further show the importance of themulti-level attention
mechanism, we add the generated feature maps in Se to the
input facial images and visualize them in Fig. 5. Specifically,
the combined feature maps [see Eq. (3)] before the FC layer
are first added along the channel dimension, which generates
an attentive featuremapwith a size of 7×7. Then, this feature
map is resized to the same size as the input image. Finally,
we add the resized attentive feature map to the input image
and obtain the final result.

As given in Fig. 5, thewarm-toned parts of an image corre-
spond to the regions with large values in the attentive feature
map, while the cold-toned parts correspond to the regions
with small values in the attentive featuremap.Wecanobserve
that the attentive feature map is able to focus on the salient
facial regions (especially the regions around the eyes and
mouth) that are critical for FER. In particular, for the images
in RAF-DB, the corresponding attentive feature maps tend
to focus on larger facial patches than those in MMI. This
is because the images in RAF-DB involve large pose vari-
ations and low quality. A larger facial patch is beneficial to
extract more discriminative features for FER on the in-the-
wild database.

4.3.3 Influence of the Different Disturbing Factors

As shown in Table 3, all the DDL variants consistently
perform better than Baseline_mat, which demonstrates the
importance of the disturbance subnetwork Sd . For the RAF-
DB database, the recognition accuracy obtained by DDL
tends to be higher when more disturbing factors are con-
sidered. DDL achieves the best performance when all the
disturbing factors are employed for disturbance-specific
feature learning in Sd . This is because the images in
RAF-DB contain severe variations caused by multiple dis-
turbing factors. Disentangling these disturbing factors from
facial expression images benefits the extraction of effec-
tive expression-specific features. However, for the MMI
database, DDL obtains the best accuracy when all the dis-
turbing factors except for the pose are considered. This is
because the images in MMI do not involve pose variations
(the images are all frontal). Therefore, it is critical to prop-

123



International Journal of Computer Vision

c

MMI RAF-DB

c

(a) (b) 

Fig. 6 Visualization of the importance weights (corresponding to various disturbing factors) learned by the proposed ADDL in the training sets of
the a MMI and b RAF-DB databases

Baseline Baseline_mat ADDL(a) (b) (c)

Fig. 7 Feature visualization using t-SNE. The features are extracted
by using two baseline methods and the proposed ADDL method. The
first row shows the feature visualization on the MMI database, and the
second row shows the feature visualization on the RAF-DB database. a

Feature visualization on the model trained by Baseline. b Feature visu-
alization on the model trained by Baseline_mat. c Feature visualization
on the model trained by the ADDL method

erly choose the disturbing factors by taking into account the
characteristics of the FER database.

4.3.4 Influence of the ADFL andMINE

FromTable 3, we canmake the following observations. First,
the ADDL_ADFL method achieves better recognition per-
formance than all the DDL variants. Compared with the
DDL_gar&id&il&pmethod,which does not consider the dif-

ferent influences of disturbing factors (i.e., the importance
weights corresponding to all the disturbing factors are the
same), the ADDL_ADFL method obtains 1.84% and 0.91%
improvements in terms of recognition accuracy on MMI and
RAF-DB, respectively. This indicates that adopting the SA
layer is effective in learning the importance weights, which
can be further beneficial to the extraction of disturbance-
specific features in Sd .
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Table 4 The NMI values obtained by different methods

Methods MMI RAF-DB

Baseline 0.610 0.655

Baseline_at 0.628 0.671

Baseline_mat 0.662 0.671

DDL_g 0.671 0.676

DDL_ga 0.675 0.678

DDL_gar 0.676 0.680

DDL_gar&id 0.682 0.682

DDL_gar&id&il 0.688 0.682

DDL_gar&id&il&p 0.670 0.685

ADDL_ADFL 0.693 0.699

ADDL_MI 0.700 0.694

ADDL_MI-DFEM 0.672 0.679

ADDL 0.711 0.709

For NMI values, the higher is better. The best results are boldfaced

Second, to demonstrate the importance of explicit disen-
tanglement, we jointly train the MINE and the ADDM in
the ADDL_MI method. The ADDL_MI method also obtains
higher accuracy than all the DDL variants. Therefore, mini-
mizing the mutual information is advantageous to explicitly
disentangle disturbance-specific features from expression-
specific features and has a positive influence on the final
performance.

Third, the ADDL method achieves the best accuracy on
both in-the-lab and in-the-wild databases when both the
ADFL and MINE are jointly adopted. Specifically, the pro-
posed ADDL method outperforms the DDL_gar&id&il&p
method by 2.57% and 1.17% onMMI and RAF-DB, respec-
tively. In summary, the developed ADFL and MINE are
effective to improve the FER performance.

To illustrate that the importance weights from the AFDL
can reflect the different influences of disturbing factors in the
FER training database, we visualize the importance weights
learned by the ADDL method in the training sets of MMI
and RAF-DB, as shown in Fig. 6. In Fig. 6a, the importance
weight corresponding to the pose is smaller than those cor-
responding to the other disturbing factors in MMI. This is
because the images from MMI do not contain severe pose
variations. In Fig. 6b, the weights corresponding to gen-
der, race, age, and pose are similar and higher than the
weight corresponding to identity in RAF-DB. This indi-
cates that RAF-DB suffers frommore disturbing factors than
MMI. Therefore, the above results validate that the proposed
AFDL can adaptively estimate the importance weights cor-
responding to different disturbing factors according to the
characteristics of the FER database.

To demonstrate that our proposedmethod is able to extract
discriminative features for expression recognition,we further

Table 5 Ablation studies for the influence of the different DFEMmod-
els

Databases MMI RAF-DB

Multi-PIE 85.00 88.89

RAF-DB 85.71 88.69

Multi-PIE & RAF-DB 86.13 89.34

The best recognition accuracies (%) are boldfaced

use t-SNE (Maaten & Hinton, 2008) to visualize the features
in the 2D space. Figure 7 shows the feature visualization
obtained by the Baseline, Baseline_mat, andADDLmethods
on the MMI and RAF-DB databases.

From Fig. 7, we can see that the proposed ADDL method
can effectively reduce intra-class variances and inter-class
similarities comparedwithBaseline andBaseline_mat.Base-
line_mat achieves better inter-class separation and intra-class
compactness than Baseline, which verifies the superiority of
the multi-level attention mechanism and attention blocks. As
shown in the second row of Fig. 7, due to the great challenges
of the RAF-DB database, the features from different classes
severely overlap for the Baseline method. In contrast, for the
proposed ADDL method, the features from the same class
are more closely clustered, while the inter-class distances
are enlarged (especially for surprise, sad, neutral, and disgust
expressions). Therefore, our method is capable of effectively
disentangling the disturbance, even when some challenging
variations occur in facial expression images.

Finally, we adopt the Normalized Mutual Information
(NMI) value to quantitatively measure the quality of clas-
sification results obtained by different methods, as shown in
Table 4. We can observe that the ADDL method gives the
highest NMI value among all the competing methods. More-
over, both ADDL_ADFL and ADDL_MI obtain higher NMI
values than the three baselines and six DDL variants. This
further demonstrates the effectiveness of ADFL and MINE
for reducing intra-class differences and inter-class similari-
ties.

4.3.5 Influence of the DFEM

Weevaluate the influence of theDFEMon the final perfor-
mance. We compare the ADDL_MI-DFEM with the ADDL
and ADDL_ADFL methods.

As shown in Table 3, we can see that the recognition
accuracy obtained by the ADDL_MI-DFEM method signif-
icantly drops on both in-the-lab and in-the-wild databases
compared with that of the ADDL method. When the DFEM
is not adopted, ADDL is only optimized by the CE loss
and mutual information loss. In this way, the disturbance-
specific features are learned in an unsupervised way with-
out using any prior knowledge about disturbing factors.
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Table 6 Ablation studies for the influence of backbones pretrained on
different databases

Pretrained Databases MMI RAF-DB

– – 70.76 85.30

� ImageNet 84.03 87.58

� AffectNet 85.30 88.46

� MS-Celeb-1M 86.13 89.34

The best recognition accuracies (%) are boldfaced

Table 7 Ablation studies for the
influence of the balanced
parameters λ1, λ2, and λ3 on the
MMI and RAF-DB databases

λ1 MMI RAF-DB

(a) Influence of λ1

0.0 83.39 88.27

0.5 84.72 88.92

1.0 86.13 89.34

1.5 85.50 88.62

2.0 83.45 88.30

λ2 MMI RAF-DB

(b) Influence of λ2

0.00 83.28 88.04

0.05 85.45 88.85

0.10 86.13 89.34

0.15 85.08 89.11

0.20 84.74 88.98

λ3 MMI RAF-DB

(c) Influence of λ3

0.0000 85.40 89.08

0.0001 85.77 89.05

0.0010 86.13 89.34

0.0100 85.67 89.08

0.1000 84.91 88.82

The best recognition accuracies
(%) are boldfaced

Thus, the disturbance subnetwork cannot effectively capture
disturbance-related information, degrading the disentangle-
ment performance of ADDL.

Comparedwith theADDL_MI-DFEM, theADDL_ADFL
method also has better performance since it is able to extract
more discriminative disturbance-specific features by leverag-
ing prior information based on the trained DFEM. Therefore,
the DFEM plays a critical role in the disturbance disentan-
glement to improve the accuracy of the ADDL method.

4.3.6 Influence of the Different DFEMModels

We evaluate the performance of our method with the dif-
ferent DFEM models trained based on three face databases

(Multi-PIE, RAF-DB, andMulti-PIE & RAF-DB), as shown
in Table 5.

We can see that when the DFEM is trained based on
Multi-PIE (including the labels of identity, illumination, and
pose), ADDL only achieves 85.00% and 88.89% on MMI
and RAF-DB, respectively.When the DFEM is trained based
on RAF-DB (including the labels of gender, race, and age),
ADDL obtains 85.71% and 88.69% on MMI and RAF-DB,
respectively. However, when both RAF-DB and Multi-PIE
are used to train the DFEM, the performance of the ADDL
method is greatly improved. This further shows the impor-
tance of considering different types of disturbing factors for
disturbance disentanglement.

4.3.7 Influence of Backbones Pretrained on the Different
Databases

We investigate the influence of backbones pretrained on
the different databases (including ImageNet, AffectNet, and
MS-Celeb-1M)on thefinal performance, as shown inTable 6.
The performance obtained by ourmethodwithout pretraining
the backbone is also evaluated.

Our method with the pretrained backbone achieves much
better FER performance than that without pretraining the
backbone. Moreover, our method with the backbone pre-
trained onMS-Celeb-1Mgives better performance than those
pretrained on other large-scale databases. This is because
MS-Celeb-1M (including 10M images) contains manymore
facial images than AffectNet (including 283 K images),
which facilitates the backbone network to extract more effec-
tive global features for FER. Although there are a great
number of images in ImageNet, most samples are natural
images rather than facial images. Therefore, our methodwith
the backbone pretrained on ImageNet gives the worst perfor-
mance among the three pretrained backbones.

4.3.8 Influence of Balanced Parameters

We study the influence of three balanced parameters (i.e., λ1,
λ2, and λ3) in the joint loss [Eq. (14)], as shown in Table 7.

Specifically, we first fix λ2 = 0.10 and λ3 = 0.0010,
and set the values of λ1 from 0.0 to 2.0. The results are
shown in Table 7a.Whenλ1 = 0.0, adversarial training is not
adopted, and thus, the disturbance-specific features cannot be
effectively learned, leading to a performance decrease.When
λ1 = 1.0, the proposed method obtains the highest accuracy.
Then, we fix λ1 = 1.0 and λ3 = 0.0010, and set the values
of λ2 from 0.00 to 0.20. The results are shown in Table 7b.
The proposed method achieves the top performance when
λ2 = 0.10. Note that when λ2 = 0.00 (attention transfer is
not used in this case), the proposed method achieves worse
accuracy than that without using adversarial training on both
MMI and RAF-DB. Hence, it is important to bridge the gap
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Table 8 Comparisons of all the
competing methods on
in-the-lab databases (CK+,
MMI, and Oulu-CASIA)

Methods Accuracy (%)

CK+ MMI Oulu-CASIA

LBP-TOP (Zhao & Pietikainen, 2007) 88.99‡ 59.51 68.13

DTAGN* (Jung et al., 2015) 97.25‡ 70.20 81.46

PPDN (Zhao et al., 2016) 97.30† – 72.40

IACNN (Meng et al., 2017) 95.37‡ 71.55 –

PHRNN-MSCNN* (Zhang et al., 2017) 98.50‡ 81.18 86.25

FN2EN (Ding et al., 2017) 98.60† – 87.71

DLP-CNN (Li & Deng, 2018) 95.78† 78.46 -

DeRL (Yang et al., 2018a) 97.37‡ 73.23 88.00

IPA2LT (Zeng et al., 2018) 92.45‡ 65.61 61.49

DAM-CNN (Xie et al., 2019a) 95.88† – –

L2-sparseness (Xie et al., 2019b) 97.59‡ 78.54 82.92

FMPN (Chen et al., 2019) 98.06 82.74 –

TDGAN (Xie et al., 2020) 97.53 ± 2.03‡ – –

DDL (Ruan et al., 2020) 99.16‡ 83.67 88.26

ADDL (proposed) 99.64‡ 86.13 89.44

The best results are boldfaced. ‡ and † denote that seven and six expression categories, respectively, are used
in CK+; *indicates that the method is trained based on the image sequences

between the DFEM and the disturbance subnetwork at the
lower layers. Finally, Table 7c illustrates the results obtained
by our method by fixing λ1 = 1.0 and λ2 = 0.10 and varying
the values of λ3 from 0.0000 to 0.1000. We can observe
that the proposed method obtains the best accuracy when
λ3 = 0.0010. In this paper, we use λ1 = 1.0, λ2 = 0.10, and
λ3 = 0.0010 for all the experiments.

4.4 Comparisons with State-of-the-Art FERMethods

In this subsection, we compare our proposed method with
several state-of-the-art FER methods.

For in-the-lab databases, we compare the proposedADDL
with fourteen representative FER methods, including LBP-
TOP (Zhao & Pietikainen, 2007), PPDN (Zhao et al.,
2016), FN2EN (Ding et al., 2017), IACNN (Meng et al.,
2017), DLP-CNN (Li & Deng, 2018), DTAGN (Jung et al.,
2015), DeRL (Yang et al., 2018a), IPA2LT (Zeng et al.,
2018), DAM-CNN (Xie et al., 2019a), PHRNN-MSCNN
(Zhang et al., 2017), L2-sparseness (Xie et al., 2019b),
FMPN (Chen et al., 2019), TDGAN (Xie et al., 2020),
and our previous DDL (Ruan et al., 2020). For in-the-
wild databases, we also compare our proposed ADDL with
several representative FER methods, including gACNN (Li
et al., 2018), IPA2LT (Zeng et al., 2018), SPDNet (Acharya
et al., 2018), IPFR (Wang et al., 2019), RAN (Wang et al.,
2020c), SCN (Wang et al., 2020b), FMPN (Chen et al.,
2019), CPG (Hung et al., 2019b), PAENet (Hung et al.,
2019a), PSR (Vo et al., 2020), DACL (Farzaneh & Qi,
2021),EfficientNet-B0 (Savchenko, 2021),CNN(Anas et al.,

2020), NISL (Deng et al., 2020), LLAM (Wang et al.,
2020a), ICT-VIPL (Zhang et al., 2020c), DMACS (Gera &
Balasubramanian, 2020), ResNet101+BLSTM (Liu et al.,
2020), ResNet101+BLSTM+CBAM (Liu et al., 2020), SIU
(Dresvyanskiy et al., 2020), and TNT (Kuhnke et al., 2020).

Table 8 gives the performance comparisons between the
proposed method and several state-of-the-art FER meth-
ods on in-the-lab databases (CK+, MMI, and Oulu-CASIA).
Tables 9, 10, and 11 give the performance comparisons on
two in-the-wild databases (RAF-DB and SFEW), Aff-Wild2,
and AffectNet, respectively. The accuracy obtained by each
competing method is taken directly from the corresponding
paper.

4.4.1 Results on In-the-Lab Databases

As shown in Table 8, almost all the methods obtain high
recognition accuracy in the CK+ database and relatively low
classification rates in the MMI database among the three in-
the-lab databases. This is because the images from CK+ are
of high quality and the intensities of different expressions are
strong, while those fromMMI are affected by the glasses and
the expression intensities are weak.

Among all the competing methods, the top four methods
are our proposed ADDL, DDL, FN2EN, and PHRNN-
MSCNN. The proposed ADDL method outperforms DDL
in all the in-the-lab databases due to the effectiveness
of ADFL and MINE, where the ADFL extracts adaptive
disturbance-specific features and theMINEperforms explicit
disentanglement between expression-specific features and
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Table 9 Performance comparisons between our method and several
state-of-the-art FER methods on the RAF-DB and SFEW databases

Methods Accuracy (%)

RAF-DB SFEW

IACNN (Meng et al., 2017) – 50.98

DLP-CNN (Li et al., 2017) 84.13 51.05

gACNN (Li et al., 2018) 85.07 –

IPA2LT (Zeng et al., 2018) 86.77 58.29

SPDNet (Acharya et al., 2018) 87.00 58.14

IPFR (Wang et al., 2019) – 57.40

DAM-CNN (Xie et al., 2019a) – 42.30

RAN (Wang et al., 2020c) 86.90 56.40

SCN** (Wang et al., 2020b) 88.14 –

DDL (Ruan et al., 2020) 87.71 59.86

PSR (Vo et al., 2020) 88.98 –

DACL (Farzaneh & Qi, 2021) 87.78 –

ADDL (proposed) 89.34 62.16

The best results are boldfaced. ** denotes that the RAF-DB and Affect-
Net are jointly used for training

disturbance-specific features. Note that the disturbing factors
are not explicitly disentangled in DDL, leading to infe-
rior expression-specific features. ADDL also achieves better
accuracy than FN2EN on both CK+ and Oulu-CASIA. Note
that our test set in CK+ is more challenging (since it contains
the images corresponding to the contempt expression apart
from the six basic expressions), while FE2EN only considers
the six basic expressions. PHRNN-MSCNN is comprised of
a recurrent neural network (RNN) and a CNN, where both
the facial image and facial landmarks are used as the input. In
contrast, our proposed ADDL achieves better performance
by using a single image as the input. In particular, although
MMI containsmore challenging variations than the other two

Table 11 Performance comparisons between our method and several
FER state-of-the-art methods on the AffectNet database

Methods Accuracy (%)

IPA2LT (Zeng et al., 2018) 57.31

gACNN (Li et al., 2018) 58.78

IPFR (Wang et al., 2019) 57.40

FMPN (Chen et al., 2019) 61.52

CPG (Hung et al., 2019b) 63.57

PAENet (Hung et al., 2019a) 65.29

PSR (Vo et al., 2020) 63.77

DACL (Farzaneh & Qi, 2021) 65.20

EfficientNet-B0 (Savchenko, 2021) 65.74

ADDL (proposed) 66.20

The best results are boldfaced

in-the-lab databases, ADDL outperforms PHRNN-MSCNN
by a large margin (4.95% improvements) on MMI. This can
be ascribed to the effectiveness of our proposed adaptive deep
disturbance-disentangled learning.

4.4.2 Results on In-the-Wild Databases

As shown in Table 9, we compare the proposed method
with twelve state-of-the-art FER methods on the RAF-DB
and SFEW databases. Among all the methods, the pro-
posedADDL, SCN,DACL,DDL, and SPDNet obtain higher
recognition accuracy than the other competing methods on
RAF-DB, while the proposed ADDL, DDL, IPA2LT, and
SPDNet are the top four methods on SFEW. SCN addresses
the uncertainty problem in FER and achieves state-of-the-art
performance. IPA2LT deals with the problem of inconsistent
annotations in the FER databases. SPDNet introduces the
covariance pooling into FER. PSR develops a scaling block
to handle facial images at different resolutions. DACL lever-

Table 10 Performance comparisons between our method and several state-of-the-art FER methods on the Aff-Wild2 validation set

Methods Input F1 score (%) Accuracy (%) Overall (%)

CNN (Anas et al., 2020) Image 29.16 50.77 36.29

NISL (Deng et al., 2020) Image – – 42.43

LLAM (Wang et al., 2020a) Image 38.00 49.00 42.00

ICT-VIPL (Zhang et al., 2020c) Video&Audio 33.30 64.00 43.40

DMACS (Gera & Balasubramanian, 2020) Image 37.00 64.90 46.50

ResNet101+BLSTM (Liu et al., 2020) Video 28.10 64.70 40.20

ResNet101+BLSTM+CBAM (Liu et al., 2020) Video 33.30 64.00 43.40

SIU (Dresvyanskiy et al., 2020) Video&Audio – – 56.56

TNT (Kuhnke et al., 2020) Video&Audio – – 54.60

ADDL (proposed) Image 42.23 64.73 49.66

The best results are boldfaced
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ages an attention mechanism based on a sparse center loss
to enhance the discriminative capability of features. How-
ever, the above methods do not explicitly take the disturbing
factors into consideration, which may lead to inferior perfor-
mance in the case of limited training samples.

On the one hand, IACNN and IPFR are disturbance-
disentangled-basedmethods, but they can copewith only one
or two disturbing factors. Different from the above methods,
ADDL is able to explicitly disentangle multiple disturb-
ing factors by leveraging adversarial transfer learning, even
though disturbing factors are not labeled in the FERdatabase.
On the other hand, gACNN and RAN address the occlusion
problem by combining local learning and global learning.
However, these two methods only utilize high-level fea-
tures to perform FER. Unlike these methods, ADDL exploits
both high-level features and low-level features in the expres-
sion subnetwork, thereby achieving excellent performance.
Finally, compared with DDL, ADDL achieves higher accu-
racy on RAF-DB and SFEW. It is worth pointing out that
DDL cannot adaptively choose the disturbing factors when
trained on an FER database. However, ADDL effectively
alleviates this problem by designing the ADFL.

From Table 10, our proposed ADDLmethod performs the
best among all the image-based and video-based methods,
with an overall score of 49.66%. SIU and TNT outperform
our method, because they exploit the additional temporal
and audio information for FER. Among all the competing
methods, NISL proposes a multi-task model to learn from
incomplete labels. LLAM and DMACS resort to attention
blocks to extract global and local attention-aware features
from facial images. ICT-VIPL, SIU, andTNTsimultaneously
extract visual features from videos and acoustic features
from audio tracks to construct discriminative expression fea-
tures. ResNet101+BLSTM uses ResNet-101 and BLSTM
to extract semantic features and temporal features, respec-
tively. However, the above methods do not fully consider
the multiple disturbing factors in facial expression images.
In summary, the above results show the effectiveness of our
method in the large-scale FER database.

From Table 11, the proposed ADDL outperforms the
other competing methods on AffectNet. FMPN designs an
additional branch to learn local features from facial mus-
cle moving regions. Then, the local features are combined
with holistic features for classifying expressions. CPG and
PAENet introduce compact and unforgetting models to pro-
gressively learn new tasks. EfficientNet-B0 is trained in a
multi-task learning manner, where facial attribute predic-
tion is performed to improve the representation ability of
the features (i.e., edges and corners) at the lower CNN lay-
ers. However, the above methods along with IPA2LT and

Table 12 The number of parameters and FLOPs obtained by different
methods on the RAF-DB database

Methods Training

Modules Params FLOPs

SCN ResNet-18 11.2M 1.82G

Baseline_mat Sg+Se 16.2M 2.82G

DFEM 11.4M 1.82G

ADDL MINE 16.5K 16.4K

ADDM (Sg+Se+Sd ) 20.6M 3.82G

gACNN do not perform disturbance disentanglement, lead-
ing to inferior FER performance.

4.5 Computational Complexity

In this subsection, we briefly analyze the computational com-
plexity of the ADDL method. We also evaluate SCN and the
Baseline_mat method for a comparison. Note that the results
obtained by other competing methods are not given since
their source codes are not publicly available.We use the num-
ber of parameters (Params) and Floating Point operations
(FLOPs) to evaluate the memory consumption and computa-
tional complexity of the model, respectively. Moreover, we
adopt the inference time and speed to measure latency. We
take the RAF-DB database for performance evaluation.

Table 12 reports the number of parameters and FLOPs
obtained by SCN, Baseline_mat, and ADDL. Both ADDL
and Baseline_mat have more parameters and higher FLOPs
thanSCN.This is because theADDM,which is basedonmul-
tiple attention blocks, is trained during the two-stage learning
procedure.

The inference time and speed obtained by SCN, Base-
line_mat, and ADDL are given in Table 13. We can observe
that the proposed ADDL obtains an inference time of 5.21
ms, which is similar to Baseline_mat due to the same infer-
ence phases. The inference speed of ADDL is lower than that
of SCN. Because multiple attention blocks are employed in
ADDL to extract discriminative features. This improves the
FER accuracy but slows down the inference speed of the
model. Although the computational complexity of the train-
ing phase of our proposed ADDL method is high, it can still
obtain real-time inference speed and be applicable to real-
world scenarios.

4.6 Valence and Arousal Estimation

In this subsection,weevaluate theperformanceof ourmethod
for the task of valence and arousal (VA) estimation on the
AffectNet database. Similar to previous methods (Mollahos-
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Table 13 The inference time and speed obtained by different methods
on the RAF-DB database

Methods Testing

Inference time (ms) Speed (FPS)

SCN 3.72 268.88

Baseline_mat 5.17 193.52

ADDL 5.21 192.12

The inference time and speed are measured in milliseconds (ms) and
frames per second (FPS), respectively

seini et al. 2017; Jang et al., 2019; Kollias et al., 2018), we
view the VA estimation as a regression task.

To perform the VA estimation, an FC layer is added after
the expression classification layer (i.e., the last layer) in Se
to regress the valence and arousal values. Then, we fine-
tune the classification and regression layers based on a well-
trained ADDM that obtains the best validation accuracy for
a 7-way FER. The learning rate is set to 0.001 for the last
two layers and 0.0001 for the other layers in the ADDM.
In this paper, we adopt two commonly used metrics, i.e.,
root mean square error (RMSE) and concordance correlation
coefficient (CCC) (Mollahosseini et al. 2017), to evaluate
the performance. Thus, we add the RMSE and CCC losses
into Eq. (14) for joint training. The comparison results are
reported in Table 14.

As shown in Table 14, the factorized high-order CNN
method achieves the best performance on the four evalua-
tion metrics except for the RMSE of valence. The proposed
ADDL obtains the best result on the RMSE of valence and
the second place on the other three evaluation metrics. Fac-
torized high-order CNN (Kossaifi et al., 2020b) employs a
higher-order factorized convolution network, where a single
tensor regression layer (Kossaifi et al., 2020a) is dedicated
to performing regression of the VA values. In contrast, the
proposed ADDL is based on a classification model with an
additional regression layer, which may limit the regression
performance. The VGG-Face+2M imgs method synthesizes
facial images to improve the performance for the VA esti-
mation. Face-SSD jointly performs face detection and face

analysis. However, these methods obtain worse performance
than ours. These results show the feasibility of our method
for the VA estimation.

5 Conclusion and FutureWork

In this paper, we propose a novel ADDL method for FER.
ADDL is able to disentangle multiple disturbing factors
simultaneously and adaptively (even when the labels of dis-
turbing factors are not available in the FER database) and
effectively extract expression-related information. The train-
ing of ADDL contains two stages. First, a DFEM is trained
to identify multiple disturbing factors in a multi-task learn-
ing manner. Then, based on the trained DFEM, an ADDM is
learned to classify facial expressions by considering the char-
acteristics of the FER database. In the ADDM, an ADFL is
developed to estimate the importance weights corresponding
to different disturbing factors and perform adversarial trans-
fer learning. Furthermore, an MINE is employed to enable
the explicit disentanglement between expression-specific
features and disturbance-specific features. Extensive experi-
ments on both in-the-lab and in-the-wild FER databases have
demonstrated the superior performance of ADDL over sev-
eral state-of-the-art FER methods.

It is widely assumed that facial expressions can infer the
emotional state of humans. However, Barrett et al. (2019)
show that the way humans express their emotions may
significantly vary across different cultures and situations.
Moreover, they also reveal that similar configurations of
facial movements may belong to different emotion cate-
gories. Naturally, human perception of emotions does not
rely on one type of information. Instead, it is triggered by
a variety of cues from different sources. By investigating
such cues, many recent efforts (Lv et al., 2021) have been
proposed toward multi-modality (such as facial expressions,
body gestures, and voice to physiological signals) emotion
recognition by leveraging the strengths of each modality. In
the future, we plan to extend our method to multi-modality
emotion recognition.

Table 14 The results of valence
and arousal estimation on the
AffectNet databas

Methods Valence Arousal

CCC RMSE CCC RMSE

AlexNet (Mollahosseini et al. 2017) 0.60 0.37 0.34 0.41

Face-SSD (Jang et al., 2019) 0.57 0.44 0.47 0.39

VGG-Face+2M imgs (Kollias et al., 2018) 0.62 0.37 0.54 0.39

Factorized higher-order CNN (Kossaifi et al., 2020b) 0.71 0.35 0.63 0.32

ADDL (proposed) 0.66 0.34 0.59 0.33

The best results are boldfaced
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