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Abstract
Existing deep learning-based facial attribute recognition (FAR) methods rely heavily on large-scale labeled training data.
Unfortunately, in many real-world applications, only limited labeled data are available, resulting in the performance dete-
rioration of these methods. To address this issue, we propose a novel spatial-semantic patch learning network (SPL-Net),
consisting of a multi-branch shared subnetwork (MSS), three auxiliary task subnetworks (ATS), and an FAR subnetwork, for
attribute classification with limited labeled data. Considering the diversity of facial attributes, MSS includes a task-shared
branch and four region branches, each of which contains cascaded dual cross attention modules to extract region-specific
features. SPL-Net involves a two-stage learning procedure. In the first stage, MSS and ATS are jointly trained to perform
three auxiliary tasks (i.e., a patch rotation task (PRT), a patch segmentation task (PST), and a patch classification task (PCT)),
which exploit the spatial-semantic relationship on large-scale unlabeled facial data from various perspectives. Specifically,
PRT encodes the spatial information of facial images based on self-supervised learning. PST and PCT respectively capture
the pixel-level and image-level semantic information of facial images by leveraging a facial parsing model. Thus, a well-
pretrained MSS is obtained. In the second stage, based on the pre-trained MSS, an FAR model is easily fine-tuned to predict
facial attributes by requiring only a small amount of labeled data. Experimental results on challenging facial attribute datasets
(including CelebA, LFWA, and MAAD) show the superiority of SPL-Net over several state-of-the-art methods in the case of
limited labeled data.
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1 Introduction

Facial attributes (such as gender, age, and expression)
describe important visual properties of facial images, and
providemid-level representations between low-level features
and high-level labels (Cao et al., 2018a). Over the past few
years, facial attribute recognition (FAR) has attracted con-
siderable attention from both academia and industry. This is
mainly because of its significant importance in various com-
puter vision tasks, including face verification and recognition
(He et al., 2018b; Chen et al., 2018; Song et al., 2018; Rao
et al., 2019; Zhang et al., 2017b), image editing (Song et
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al., 2019; Egger et al., 2018; Huang et al., 2018), and image
retrieval (Nguyen et al., 2018; Li et al., 2015).

With the rapid development of deep learning, a large num-
ber of FAR methods (Zhang et al., 2014; Liu et al., 2015;
Kalayeh et al., 2017;Mahbub et al., 2018; He et al., 2018a; Li
et al., 2018; Rudd et al., 2016; Hand &Chellappa, 2017; Cao
et al., 2018a) have been proposed and shown promising per-
formance. Thesemethods often rely on abundant labeled data
to learn discriminative feature representations for classifying
attributes. However, in many real-world applications, only
a small amount of labeled training data are provided since
labeling massive multi-attribute images is time-consuming
and labor-intensive. As a consequence, the performance of
these methods may substantially drop in these applications.
In this paper, we study the challenging problem of FAR with
limited labeled data.

To address the challenge of learning with limited labeled
data, many recent efforts (Caron et al., 2018; Noroozi &
Favaro, 2016; Gidaris et al., 2018; He et al., 2020; Chen
et al., 2020; Sohn et al., 2020; Miyato et al., 2018) have
been devoted to extracting feature representations in a self-
supervised or semi-supervised learning fashion. Generally,
self-supervised learning takes advantage of automatically
generated labels for model training, while semi-supervised
learning leverages both labeled andunlabeleddata to improve
the generalization capability of models.

Traditional self-supervised and semi-supervised learning
methods usually target at image classification (Wu& Prasad,
2017; Zhai et al., 2019;Misra&Maaten, 2020), object detec-
tion (Gao et al., 2019; Tang et al., 2017), and semantic
segmentation (Wei et al., 2018; Wang et al., 2020) tasks.
Unlike these tasks, FAR is a multi-label learning task, where
facial attributes are comprised of global attributes (such as the
“Male” attribute) and local attributes (such as the “Smiling”
attribute) according to different regions of interest. To pre-
dict these attributes, a comprehensive understanding of the
spatial-semantic relationship of facial images plays a critical
role. For instance, the “Male” and “Attractive” attributes are
identified by extracting the semantic information from the
whole facial region. Similarly, to predict the “Smiling” and
“Mouth-Open” attributes, it is natural to locate the mouth
region and determine whether the mouth is smiling and open
at a semantic level. Therefore, it is of great significance to
learn fine-grained feature representations, in particular cap-
turing the spatial-semantic relationship, for FAR.

Motivated by the above observations, we propose a novel
spatial-semantic patch learning network (SPL-Net) method,
which effectively exploits the spatial-semantic relationship
on large-scale unlabeled facial data, for FAR with limited
labeled data. SPL-Net consists of a multi-branch shared sub-
network (MSS), three auxiliary task subnetworks (ATS), and
an FAR subnetwork. For MSS, it includes a task-shared
branch (denoted TB) and four region branches (denoted RB).

Fig. 1 Illustration of the two-stage learning procedure of our proposed
SPL-Net method. In the first stage, MSS and ATS (including PRT,
PST, and PCT subnetworks) are jointly trained to perform three aux-
iliary tasks on large-scale unlabeled data, and a well-pretrained MSS
is obtained. In the second stage, the pre-trained MSS is transferred to
perform FAR with limited labeled data

TB extracts shared features from input facial images,while
RB aggregates features from TB based on cascaded dual cross
attention modules. For ATS, it contains a patch rotation task
(PRT) subnetwork, a patch segmentation task (PST) subnet-
work, and a patch classification task (PCT) subnetwork.

The training of SPL-Net involves a two-stage learning pro-
cedure. In the first stage, MSS and ATS are jointly trained to
perform three auxiliary tasks on large-scale unlabeled facial
data. Therefore, a powerful pre-trained MSS is obtained.
Specifically, based on TB , PRT identifies the rotated patch
given several facial patches (one of which is rotated) and
PST performs semantic segmentation on a randomly cropped
facial patch. Meanwhile, based on RB , PCT predicts facial
components for the same patch in PST. In this way, PRT
captures the spatial information of facial images, while PST
and PCT respectively encode the pixel-level and image-level
semantic information of facial images. These three tasks and
their joint training effectively capture the spatial-semantic
relationship between facial regions, which can in turn lead to
a significant improvement of FARwhen only limited labeled
data are available. In the second stage, an FAR model (con-
sisting of the pre-trained MSS and the FAR subnetwork) is
easily fine-tuned to classify attributes by using labeled data.
Figure1 illustrates the training process of the proposed SPL-
Net method.

In summary, the main contributions of our work are as
follows:

– We propose a novel SPL-Net to address the problem
of FAR with limited labeled data. SPL-Net effectively
exploits the spatial-semantic information on unlabeled
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facial data to learn a powerful pre-trained model. There-
fore, we are able to obtain an accurate attribute prediction
model by simply fine-tuning the pre-trained model with
limited labeled data.

– We elaborately design three auxiliary tasks tomake use of
the intrinsic dependencies between patch rotation predic-
tion and patch segmentation/classification. This enables
the pre-trained model to extract patch-level fine-grained
feature representations.

– Experimental results show that our proposedmethod con-
sistently outperforms several state-of-the-art methods in
the case of limited labeled data, which shows the impor-
tance of exploring the spatial-semantic relationship for
predicting facial attributes.

This paper is a substantial extension of our previous con-
ference work (Shu et al., 2021). The method in our previous
work predicts all the facial attributes based on the same
features extracted from the backbone. However, as we men-
tioned above, identifying global and local attributes generally
relies on different facial regions. Therefore, our previous
work does not fully exploit the characteristics of different
facial attributes. SPL-Net alleviates this limitation from two
main aspects. First, we designMSS and the PCT subnetwork
with multiple branches to classify facial components. Such
a way explicitly accounts for the differences between facial
components in the auxiliary task, and thus in turn benefits the
FAR model to predict global and local attributes. Second,
we innovatively associate different component labels with
the corresponding attribute labels to effectively model the
instrinsic relationship between facial components and facial
attributes. Hence, we can perform PCT in the first stage and
FAR in the second stage by using the same network archi-
tecture. In this manner, the extended auxiliary task is more
suitable for FAR with limited labeled data.

To summarize, we have added the following new signifi-
cant contributions:

– We design a multi-branch shared subnetwork MSS to
encode the region-specific information for different facial
regions (which naturally correspond to different attribute
groups). In particular, we leverage adversarial training
between the whole region branch and the three local
region branches. Hence, the whole region branch can
capture the global context in facial images, even when
randomly cropped facial patches are used as inputs for
training those region branches.

– We extend the original PCT subnetwork to the multi-
branch structure for classifying facial components. In the
PCT subnetwork,we introduce a spatialmutual exclusion
loss that explicitly enforces each local branch to focus on
its corresponding facial region. This is helpful to classify

diverse attributes in the FAR task with limited labeled
data.

– By virtue of the above extensions, our new SPL-Net
achieves better recognition accuracy than our previous
method. Furthermore, we validate the superiority of SPL-
Net on the newly releasedMAADdataset (Terhörst et al.,
2020).

The remainder of this paper is organized as follows. Sec-
tion2 briefly reviews the related work. Section3 introduces
the details of our proposed SPL-Net method. Section4 pro-
vides experimental results on three facial attribute datasets.
Finally, Sect. 5 presents the conclusion.

2 RelatedWork

In this section, we review the related work, including facial
attribute recognition and learning fromunlabeled data, which
is closely related to our method.

2.1 Facial Attribute Recognition (FAR)

Currently, deep learning-based methods have become dom-
inant in the field of FAR. They can be roughly categorized
into two groups: part-based methods and holistic methods
(Zheng et al., 2020).

Part-based methods first locate the regions for different
facial attributes, and then predict each attribute in a spe-
cific facial region. For example, SPLITFACE (Mahbub et
al., 2018) takes several facial segments and a whole facial
image as the input and identifies attributes. Kalayeh et al.
(2017) leverage a deep semantic segmentation network to
improve the prediction of facial attributes. Unlike part-based
methods, holistic methods pay more attention to model
the relationships among attributes. For instance, Mao et al.
(2020) propose to perform FAR based on a deep multi-task
and multi-label convolutional neural network (DMM-CNN).
Considering the correlations and distinctions between dif-
ferent attributes, several methods perform FAR based on
attribute grouping. He et al. (2019) divide facial attributes
into six groups and propose an adaptive threshold algorithm
to classify attributes. Cao et al. (2018a) resort to the auxiliary
information (i.e., attribute grouping and identity information)
to customize the network architecture and boost the FAR per-
formance by capturing the local geometric structure.

The above methods learn the optimized network parame-
ters by training on large-scale labeled data. However, inmany
real-world applications, a large number of labels can be diffi-
cult to collect. As a result, the performance of these methods
is greatly influenced when only a few labeled training data
are available. Different from these methods, we address the
challenging and little-explored problem of FAR with limited
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labeled data. In particular, we design SPL-Net with three
auxiliary tasks to capture the spatial-semantic relationship
on large-scale unlabeled facial data. In this way, a power-
ful pre-trained model can be obtained and then fine-tuned
to accurately classify facial attributes by using only limited
labeled data.

2.2 Learning from Unlabeled Data

To alleviate the extensive expense of annotating large-scale
data, various methods have been developed by learning from
unlabeled data. Among them, self-supervised learning and
semi-supervised learning are the two popular paradigms.

Self-Supervised Learning Self-supervised learning meth-
ods often learn general features from large-scale unlabeled
data without using any human-annotated labels (Jing& Tian,
2021). For example, Caron et al. (2018) employ an image
clustering algorithm to generate labels for image classifica-
tion. Noroozi and Favaro (2016) divide the images into nine
patches and shuffle these patches. Then, a pretext task is
designed to establish correct spatial positions of input patches
by solving the jigsaw puzzle. Gidaris et al. (2018) develop
a self-supervised learning method to predict the geometric
transformation of images.

Recently, contrastive learning has been widely studied in
self-supervised learning. He et al. (2020) develop momen-
tum contrast (MoCo) by constructing dynamic dictionaries
for unsupervised visual representation learning. They for-
mulate an instance discrimination task to determine whether
a query and a key are encoded views (e.g., different crops)
of the same image. Chen et al. (2020) combine several data
augmentation methods to transform each sample to generate
two correlated views of the same sample, and use convolu-
tional networks to extract image features. Then, a multi-layer
perceptron (MLP) is employed to obtain the nonlinear projec-
tion of image features, thereby improving the representation
quality of features.

Semi-SupervisedLearningCurrent semi-supervised learn-
ingmethodsmainly contain two categories: generativemeth-
ods and teacher-student methods (Qi & Luo, 2020).

The generative methods learn the real data distribution
from training data and then generate new data according to
the distribution. Salimans et al. (2016) use a generative adver-
sarial network (GAN) to generate virtual samples, where
the unlabeled and generated samples are classified into real
classes and a fake class, respectively. They further combine
the classification loss and the unsupervised GAN loss to train
the model.

For teacher-student methods, a teacher model is first
trained to predict the proxy labels of unlabeled data. Then,
both labeled and unlabeled data (with the proxy labels) are
employed to train a student model. MixMatch (Berthelot et
al., 2019) identifies low-entropy labels for data-augmented

unlabeled data, and then mixes labeled and unlabeled data
based on MixUp (Zhang et al., 2017a). FixMatch (Sohn et
al., 2020) introduces a strong augmentation and a weak aug-
mentation to an unlabeled sample, and predicts the labels for
the two types of augmentations. Virtual adversarial training
(VAT) (Miyato et al., 2018) develops a novel regularization
method based on the virtual adversarial loss, which defines
the virtual adversarial direction on unlabeled data.

The above methods often learn holistic feature represen-
tations in a variety of computer vision tasks, including image
classification, object detection, and semantic segmentation.
However, they may not be suitable for the FAR task, where
each facial attribute is associated with a specific facial region
of interest. In this paper, three auxiliary tasks are designed
and jointly performed to model the spatial-semantic rela-
tionship between facial regions by leveraging patch rotation
prediction and patch segmentation/classification. Moreover,
MSS is introduced to extract region-specific features which
naturally correspond to different attribute groups. In this
way, fine-grained feature representations are extracted by our
method, which can largely facilitate FAR.

3 ProposedMethod

In this section, we first give an overview of the proposed
method in Sect. 3.1. Then, we introduce MSS in Sect. 3.2.
Next, we describe the details of three auxiliary tasks and the
FAR model in Sects. 3.3 and 3.4, respectively. Finally, we
summarize the overall training of our method in Sect. 3.5.

3.1 Overview

The network architecture of our proposed SPL-Net method
is illustrated in Fig. 2. SPL-Net involves MSS for extracting
mid-level features, ATS for performing multi-auxiliary task
learning, and an FAR subnetwork for predicting attributes.
To address the problem of FARwith limited labeled data, we
introduce a two-stage learning procedure. In the first stage,
MSS and ATS are jointly trained to perform three auxiliary
tasks (i.e., PRT, PST, and PCT) and learn fine-grained feature
representations encoding the spatial-semantic information
on large-scale unlabeled facial data. Hence, a powerful pre-
trained MSS is obtained. In the second stage, an FAR model
(consisting of the pre-trainedMSS followed by the FAR sub-
network) is easily fine-tuned to classify facial attributes by
using only a small amount of labeled facial data.

For PRT, it encodes the spatial information of facial
images in a self-supervised learning manner. Specifically,
an input facial image is divided into several patches, one of
which is randomly chosen and rotated. Then, PRT identi-
fies the rotated patch. For PST and PCT, they respectively
exploit the pixel-level and image-level semantic information
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Fig. 2 The network architecture of the proposed SPL-Net method.
SPL-Net involves MSS, ATS (consisting of PRT, PST, and PCT subnet-
works), and an FAR subnetwork (which adopts the network structure,
consisting of GAP layers and FC layers, same as the PCT subnetwork).

MSS contains TB and RB (including RW
B , RU

B , R
M
B , and RL

B ). TB is based
on PreAct ResNet-18 while each region branch of RB is comprised of
cascaded DCA modules

of facial images. To achieve this, PST performs semantic seg-
mentation on a randomly cropped facial patch and assigns a
semantic label to each pixel in this patch, while PCT predicts
facial components for the same input patch in PST.

Note that the ground-truth semantic labels and facial com-
ponent labels are usually not provided in facial attribute
datasets. In this paper, we take advantage of an externally
trained facial parsing model (BiSeNetV2 (Yu et al., 2021)) to
generate proxy semantic labels and proxy facial component
labels (obtained by aggregating predicted semantic labels
from BiSeNet) for PST and PCT, respectively. Therefore,
during the training of auxiliary tasks in the first stage, all the
labels are automatically generated to reduce the burden of
labeling large-scale facial data.

3.2 Multi-branch Shared Subnetwork (MSS)

MSS includes a task-shared branch (denoted TB) and four
region branches (denoted RB), as shown in Fig. 2. In this
paper, TB , which is based on PreAct ResNet-18 (He et al.,

2016b) (consisting of four PreAct blocks), extracts features
for both the PRT and PST subnetworks. RB , which contains a
whole region branch (denoted RW

B ), an upper region branch
(denoted RU

B ), a middle region branch (denoted RM
B ), and

a lower region branch (denoted RL
B), extracts four different

region-specific features for the PCT subnetwork. These four
branches share the same network architecture, and each of
them is composed of cascaded dual cross attention (DCA)
modules.

The detailed network architecture of the DCA module is
given in Fig. 3.

For the channel path, given two input features f1 and f2,
they are first concatenated along the channel dimension to
obtain a concatenated feature fcon , i.e., fcon = concat(f1, f2),
where concat(·) represents the channel-wise concatenation
operation. Then, fcon is fed into a channel attention (CA)
block (Hu et al., 2018) to calculate the channel attention
mask mCA, i.e., mCA = CA(fcon), where CA(·) represents
the CA block. Next, the output feature fCA of the channel
path is derived by adding fcon to the product between mCA
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Fig. 3 The network architecture of the dual cross attention (DCA)mod-
ule

and fcon , which can be expressed as

fCA = fcon ⊕ (mCA � fcon), (1)

where ‘�’ and ‘⊕’ denote the element-wise multiplication
and element-wise addition operations, respectively.

For the spatial path, f1 and f2 are first added together
to obtain a feature fsum , i.e., fsum = f1 ⊕ f2. Instead
of concatenating the features, the element-wise addition is
advantageous to preserve spatial details of two features.
Then, fsum is fed into a spatial attention (SA) block (Woo
et al., 2018) to calculate the spatial attention maskmSA, i.e.,
mSA = SA(fsum), where SA(·) represents the SA block.
Next, the output feature fSA of the spatial path is derived by
adding fsum to the product betweenmSA and fsum , which can
be formulated as

fSA = fsum ⊕ (mSA � fsum). (2)

Finally, the output feature d of the DCA module is
obtained by combining fCA with fSA as

d = DCA(f1, f2)

= fCA ⊕ fSA,
(3)

where DCA(·, ·) denotes the DCA module.
Similar to existing attention mechanisms (Zhang et al.,

2018; Fu et al., 2019; Chen et al., 2017; Zhao et al., 2018),
the DCA module involves a channel path and a spatial path.
Concretely, it combines the CA block in SENet (Hu et al.,
2018) and the SA block in CBAM (Woo et al., 2018). In
fact, the DCA module can be comprised of any CA and SA
blocks. Note that existing attention mechanisms take in a
single feature as the input and generate an enhanced feature
representation. Nevertheless, unlike these mechanisms, the
DCA module accepts two features (i.e., one is from the Pre-
Act Block in TB and the other is from the previous DCA
module in Rk

B) as the input. The concatenation operation and
the element-wise addition operation are individually used to

combine the two input features before the CA and SA blocks.
By aggregating the features along the channel and spatial
dimensions, we can effectively exploit the shared informa-
tion from TB and the region-specific information from RB .

As shown in Fig. 2, the DCA module at the first layer of
Rk
B (k ∈ {W ,U , M, L}) takes the feature o1 from the first

PreAct block in TB and its copy as the input. For the DCA
module at the n-th (n ∈ {2, 3, 4}) layer of Rk

B , the feature on
from the n-th PreAct block in TB and the attention feature
dkn−1 from the previous DCA module in Rk

B are taken as
the input. Therefore, the output feature dkn of the n-th DCA
module in Rk

B can be described as

dkn =
{
DCA(on, on), n = 1,

DCA(on,dkn−1), n ≥ 2.
(4)

On the one hand, if the whole facial image is used as the
input of MSS, PCT is trained with similar facial component
labels while PRT leverages shortcuts to identify the rotated
patch (detailed explanationswill be described in Sect. 3.3). In
this way, both PCT and PRT fail to perform well on auxiliary
tasks. Therefore, the whole region branch in MSS adopts a
randomly cropped facial patch as the input in the first stage.
On theother hand, thewhole regionbranch is designed to cap-
ture the global context information of the whole facial image.
To address this, we take advantage of adversarial training
between the whole region branch and the three local region
branches to enforce the whole region branch to aggregate the
information from local branches.

Specifically, a feature fusion block consisting of a con-
volutional layer and a batch normalization layer is used to
aggregate three region-specific featuresdU4 ,d

M
4 , anddL

4 from
the 4-th DCA modules of three local region branches, which
can be expressed as

dagg4 = g(concat(dU4 ,dM4 ,dL4 )), (5)

where dagg4 is the aggregated feature and g(·) denotes the
convolutional operation followed by batch normalization.

Then, the distributions of dagg4 and dW4 extracted by RW
B

are constrained to be as close as possible. In this way, the
feature extracted from the whole region branch can easily
capture the global semantic context with the help of three
region-specific features from different local region branches.
To achieve this, a discriminator D (consisting of four fully-
connected (FC) layers) is introduced to play amini-maxgame
between RW

B and RU
B , R

M
B , RL

B . That is, R
W
B tries to minimize

the divergence between dagg4 and dW4 , while D aims to dis-
tinguish dagg4 from dW4 . Mathematically, adversarial training
can be formulated as

min
D

max
RW
B

Ladv
MSS(R

W
B , D), (6)
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where the adversarial loss Ladv
MSS is defined as

Ladv
MSS = −E[log(D(dagg4 ))] − E[log(1 − D(dW4 )))]. (7)

The whole region branch is optimized to extract features
similar to the aggregated features from three region-specific
features. Meanwhile, notice that the whole region branch is
optimized with the joint loss (Eq. (16)) containing the clas-
sification loss corresponding to the whole facial components
in the first stage. It is also fine-tuned with the classification
loss (Eq. (17)) corresponding to the global attributes and the
whole facial images as inputs in the second stage. There-
fore, by back-propagating the gradients of the loss, the whole
region branch can hold the global view of facial images to
some extent.

Note that both PS-MCNN (Cao et al., 2018a) and our
MSS adopt the multi-branch structure to extract features
for different facial regions. However, these two methods
are significantly different. PS-MCNN aggregates features
from different branches by a simple concatenation layer. In
contrast, ourMSS aggregates features by employing an atten-
tion module (i.e., DCA), which emphasizes the important
information and suppresses the irrelevant information in the
features along the channel and spatial dimensions. By lever-
aging cascaded DCA modules, each region branch learns
informative features more effectively. Besides, compared
with ResNet-50 (He et al., 2016a) used in our previous work
(Shu et al., 2021), our MSS exploits the spatial character-
istics of facial images by extracting region-specific features
since each facial attribute corresponds to a specific facial
region. Hence, a well-pretrained MSS can be obtained in the
first stage and facilitate the training of the FAR model in the
second stage, as verified in our experiments in Sec. 4.3.

3.3 Auxiliary Tasks

In this subsection, we give the details of three auxiliary tasks.

3.3.1 Patch Rotation Task (PRT)

We design PRT to model the spatial relationship between
facial patches. As illustrated in Fig. 2, the network architec-
ture of PRT contains TB and a PRT subnetwork (composed
of a global average pooling (GAP) layer and two FC layers).

Given an input facial image I from unlabeled facial data, it
is first evenly divided into m ×m different patches, denoted
by {p1, · · · ,pm2}. Then, one patch pr is randomly chosen
and rotated by degree d that is randomly selected from 90,
180, and 270 degrees. PRT takes these patches as the input
and aims to identify the rotated patch and the corresponding
rotation angle.

Note that the random selection of a patch is guided by the
semantic mask (see Sect. 3.3.2 for more details) generated
by BiSeNetV2 (Yu et al., 2021). That is, when a selected
patch contains only the background, we will discard it and
choose another patch randomly until it involves the facial
component.

To be specific, these m ×m patches are first concatenated
along the channel dimension, and fed into a preprocessing
block (consisting of a 1× 1 convolutional layer followed by
a batch normalization layer and a PReLU layer) to reduce
the number of feature channels and improve the training
efficiency. Then, the output from the preprocessing block
is passed through several PreAct blocks to extract the patch
feature pPRT ∈ R

c×w×h , where c, w, and h represent the
channel, width, and height of the feature, respectively. Next,
the patch feature is fed into a GAP layer to obtain a fea-
ture fPRT . After that, fPRT is flattened and fed into two
FC layers and two softmax layers to predict the probabili-
ties ofm2 patches being rotated and the probabilities of three
degrees being chosen, i.e., t p = [t p1 , · · · , t p

m2 ] ∈ R
1×m2

with

t pi ∈ [0, 1], and tr = [tr1 , · · · , tr3 ] ∈ R
1×3 with tri ∈ [0, 1].

The index of the largest element in t p corresponds to that
of the predicted rotated patch, and the index of the largest
element in tr indicates the predicted rotation angle.

Similar to Noroozi and Favaro (2016), we apply color
jitter to each patch and then normalize each patch inde-
pendently. In this way, we avoid the model simply taking
shortcuts between low-level texture statistics (e.g., edge con-
tinuity, pixel intensity distribution, and chromatic aberration)
when identifying the rotated patch. Therefore, the network
is capable of extracting high-level primitives and structures,
thus effectively modeling the spatial relationship between a
patch and its neighboring patches.

The loss of PRT employs the standard cross-entropy loss,
which is formulated as

LPRT = −
⎛
⎝ m2∑

i=1

1[i=r ] log(t pi ) +
3∑

i=1

1[i=d] log(tri )

⎞
⎠ , (8)

where log(·) denotes the logarithm function; 1[i=r ] outputs
1 when i = r and 0 otherwise; 1[i=d] outputs 1 when i = d
and 0 otherwise.

It is worth pointing out that Gidaris et al. (2018) develop
a self-supervised learning method to predict the rotation
angle of an input image. However, this method is origi-
nally designed for image classification, object detection, and
semantic segmentation, and thus it does not fully take into
account the intrinsic geometric structure of images. For FAR,
different facial attributes are often associated with different
facial regions. Hence, by exploiting the spatial contextual
information between patches, our design of PRT is more
appropriate for the FAR task.
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3.3.2 Patch Segmentation Task (PST)

We develop PST to perform semantic segmentation, which
predicts the semantic label of each pixel in a patch. Con-
ventional semantic segmentation methods often consider the
whole image as the input. However, such a manner may
cause PRT to leverage shortcuts (such as low-level statis-
tics in facial images) to identify the rotated patch since PST
and PRT share the same TB . Therefore, we use a randomly
cropped facial patch as the input of PST.

As shown in Fig. 2, the network architecture of PST
consists of TB and a PST subnetwork (composed of a con-
volutional layer and a Criss-cross attention (CCA) block
(Huang et al., 2019) followed by two convolutional layers.
Different from the encoder-decoder structure used in our pre-
viouswork (Shu et al., 2021), the PST subnetwork aggregates
full-patch dependencies in horizontal and vertical directions
by the CCA block. This way accurately captures the con-
textual information from all patch pixels and benefits the
performance improvement of semantic segmentation.

Specifically, a c × c patch ps is randomly cropped from
the original facial image I and used as the input of PST.
The patch is fed into TB to extract a feature, which is then
passed through thePST subnetwork to classify each pixel into
different semantic classes. Suppose that we have J semantic
classes and the class prediction probabilities for the d-th pixel
are denoted h = [hd1, · · · , hd J ], we can formulate the loss
of the d-th pixel in ps as

Lpixel = −
J∑

j=1

qd j log(hd j ), (9)

where qd j denotes the label distribution; qd j = 1 if j is the
ground-truth label of the d-th pixel and qd j = 0 otherwise.

Generally, the semantic labels of facial images are not
available in facial attribute datasets. Therefore, we make use
of an externally trained facial parsingmodel (i.e., BiSeNetV2
(Yu et al., 2021)) to predict the semantic labels for all pixels
of the input patch ps . These predicted labels are used as the
proxy semantic labels for PST. In this paper, BiSeNetV2 is
pre-trained on ImageNet and fine-tuned with only limited
labeled data (we employ the same number of training data in
CelebA-HQ (Karras et al., 2017) as that of limited labeled
data used in the second stage, instead of using the whole
CelebA-HQ).

BiSeNetV2 may give incorrect proxy semantic labels
when applied to facial attribute datasets due to domain dis-
crepancy and limited training data. To alleviate the overfitting
caused by incorrect labels, we further leverage the label
smoothing strategy (Szegedy et al., 2016), which is formu-
lated as

q ′
d j = (1 − ε)qd j + ε

J
, (10)

where q ′
d j is themodified label distribution and ε is a smooth-

ing parameter empirically set to 0.1 as in Szegedy et al.
(2016).

With Eqs. (9) and (10), the loss of PST is defined as

LPST = 1

D

D∑
d=1

⎛
⎝−

J∑
j=1

q ′
d j log(hd j )

⎞
⎠ , (11)

where D is the total number of pixels in ps .

3.3.3 Patch Classification Task (PCT)

PST encodes the pixel-level semantic information of facial
images by performing semantic segmentation. Nonetheless,
the FAR task is an image-level multi-attribute classification
task, where each facial attribute often corresponds to the
semantic context of a whole/local facial region. Hence, we
further develop PCT to predict facial components of a given
input. In this way, the image-level semantic information of
facial images can be explicitly captured.

PCT adopts the same input (i.e., a randomly cropped facial
patch) as PST. Note that, if the whole facial image is taken
as the input, most facial components exist and thus PCT is
trained with similar facial component labels. Such a manner
is detrimental to the PCT training since the distribution of
facial component labels is highly imbalanced.

As shown in Fig. 2, the network architecture of PCT is
composed of TB , RB , and a PCT subnetwork (consisting of
four parallel GAP layers and four parallel FC layers). As we
mentioned previously, each branch of RB aggregates features
from TB based on cascaded DCA modules according to a
specific region of interest. Therefore, RB can extract both the
global and local information of a given input facial image.
More specifically, given a facial patch ps , it is first fed into TB
and RB to extract four region-specific features. Then, these
features are fed into the PCT subnetwork to predict facial
components.

In this paper, the facial components predicted in PCT are
the same as the semantic classes used in PST. However, PST
and PCT are two different tasks. PST is a pixel-level classi-
fication task (i.e., assigning a label to each pixel in a patch)
while PCT is an image-level classification task (i.e., predict-
ing the existence of facial components in a patch).

Due to the lack of ground-truth facial component labels in
facial attribute datasets, we also employ BiSeNet to assign
the proxy facial component labels of an input patch. Each
proxy label is generated by aggregating pixel-level semantic
labels predicted by BiSeNet, and thus it is tolerant of small
label errors. Thus, the proxy component labels of the input
patch are denoted as a vector, that is, ys = [y0, · · · , yJ ].
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Fig. 4 Examples of two input facial patches and their corresponding
semantic masks from CelebA. The “ear” and “right eye” exist in a
patch 1 and b patch 2, respectively. But they are not the dominant facial
components

Here, yi = 1 denotes the existence of a facial component,
and 0 otherwise. In particular, we divide J facial component
labels into four groups (a whole groupW , an upper groupU ,
a middle group M , and a lower group L) according to their
spatial locations, and each group has Jk (k ∈ {W ,U , M, L})
facial component labels. The detailed group configuration is
listed in Sect. 4.2. Accordingly, the PCT subnetwork involves
a whole branch and three local branches, where each branch
predicts facial components in a group.

Usually, a few facial components exist in ps , where some
of them only involve a relatively small number of pixels.
Some examples are illustrated in Fig. 4. Hence, we only
choose the top v dominant facial components in the patch
and label them as 1. For the rest of facial components, we
label them as 0.

The classification loss of PCT adopts the binary cross-
entropy loss, which is defined as

Lcls
PCT = −

∑
k

Jk∑
j=1

(
zkj log(p

k
j ) + (1 − zkj ) log(1 − pkj )

)
,

k ∈ {W ,U , M, L}, (12)

where pkj is the output prediction probability of the j-th facial

component in group k; zkj denotes the proxy facial component

label of the j-th facial component; zkj = 1 indicates the
existence of a facial component, and 0 otherwise.

To explicitly enforce each local branch of the PCT subnet-
work to focus on its corresponding facial region, we propose
a spatial mutual exclusion (SME) loss. Specifically, a nor-
malization operation is first applied to the outputs (denoted
by lU , lM , and lL ) of local branches of the PCT subnetwork,

and thus the normalized features l
U
, l

M
, and l

L
are

l
k = sigmoid(lk − m), k ∈ {U , M, L}, (13)

wherem = (lU ⊕ lM ⊕ lL)/3 represents the average feature,
and sigmoid(·) is the Sigmoid function which maps the value
of an element in lk larger thanm closer to 1 and that smaller
than m closer to 0.

Then, the SME loss is defined as

Lsme
PCT = l

U � l
M � l

L
. (14)

By minimizing the SME loss, three local branches are
concerned with different facial regions.

With Eqs. (7), (12), and (14), the loss of PCT is given as

LPCT = Ladv
MSS + Lcls

PCT + Lsme
PCT . (15)

3.3.4 Joint Loss

Based on the above formulation, the joint loss of SPL-Net
can be derived as

L joint = LPRT + λ1LPST + λ2LPCT , (16)

where λ1 and λ2 denote the regularization parameters to bal-
ance different losses.

3.4 FARModel

After the joint training of three auxiliary tasks in the first
stage, a comprehensively pre-trained MSS is learned. Then,
an FAR model, containing the pre-trained MSS and an FAR
subnetwork (consisting of four parallel GAP layers and four
parallel FC layers), is fine-tuned to predict facial attributes
in the second stage.

Given an input facial image I with C attribute labels, it
is first fed into TB to extract features. Then, four region
branches extract region-specific features from TB . Finally,
these features are fed into the FAR subnetwork to predict
facial attributes. According to the different spatial locations
of facial attributes, all the attribute labels are divided into
four groups {W ,U , M, L}, where each group has Ck (k ∈
{W ,U , M, L}) attribute labels. The detailed group configu-
ration is given in Sect. 4. Therefore, each branch of the FAR
subnetwork classifies facial attributes in a group.

The loss of FAR adopts the binary cross-entropy loss,
which is defined as

LFAR = −
∑
k

Ck∑
i=1

(
yki log(x

k
i ) + (1 − yki ) log(1 − xki )

)
,

k ∈ {W ,U , M, L}, (17)
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where xki represents the output prediction probability of the
i-th facial attribute in a branch of the FAR subnetwork; yki
represents the ground-truth label of the i-th facial attribute;
yki = 1 indicates the existence of a facial attribute, and 0
otherwise.

Algorithm 1 The two-stage learning procedure of SPL-Net.
Require: Unlabeled facial data U ; labeled facial data L; the training

epochs of each stage, K1, K2; the number of steps to update the
discriminator, Kd ; the number of image patches, m × m.

Ensure: A trained FAR model.
// Stage 1: Performing multi-auxiliary task learning.

1: for each k1 = 1 to K1 do
2: for each mini-batch Ub in U do
3: for i = 1 to |Ub| do
4: Randomly crop a patch ps from I ∈ Ub;
5: Divide I into m × m patches P = {p1, · · · ,pm2 };
6: Randomly select a patch pr from P and rotate it by one

randomly chosen degree from 90, 180, and 270 degrees;
7: end for
8: for kd = 1 to Kd do
9: Calculate the adversarial loss Ladv

MSS by Eq. (7);
10: FixMSS and three auxiliary task subnetworks, and update

the D;
11: end for
12: Calculate the joint loss L joint by Eq. (16);
13: Fix the D, and update MSS and three auxiliary task subnet-

works;
14: end for
15: end for

// Stage 2: Fine-tuning the FAR model.
16: for each k2 = 1 to K2 do
17: for each mini-batch in L do
18: Calculate the FAR loss LFAR by Eq. (17);
19: Update MSS and the FAR subnetwork simultaneously;
20: end for
21: end for

3.5 Overall Training

The overall training process of SPL-Net is summarized in
Algorithm 1. Generally, it involves a two-stage learning pro-
cedure. In the first stage, three auxiliary tasks are jointly
performed to capture the spatial-semantic relationship on
large-scale unlabeled facial data in amulti-task learning fash-
ion. Thus, a pre-trained MSS is learned. In the second stage,
an FAR model is fine-tuned with limited labeled facial data.

4 Experiments

In this section, we perform extensive experiments to show
the superiority of our proposed SPL-Net method. First, we
briefly introduce three public facial attribute datasets. Then,
we give the implementation details. Next, we perform abla-
tion studies to validate the effectiveness of each auxiliary
task in SPL-Net, and discuss the influence of several key

parameters of SPL-Net on the final performance. Finally, we
compare SPL-Net with several state-of-the-art methods and
analyze the computational complexity of SPL-Net.

4.1 Datasets

CelebA (Liu et al., 2015) is a popular large-scale facial
attribute dataset, which is widely used to evaluate the FAR
performance. It contains 202,599 facial images with 40
attribute annotations per image. The facial images are col-
lected with large pose variations, illumination changes, and
background clutter. CelebA is split into 3 parts, including
162,770 images for training, 19,867 images for validation,
and 19,962 images for testing.

LFWA (Huang et al., 2008) is another challenging facial
attribute dataset. It consists of 13,143 facial images with the
same attribute annotations as the CelebA dataset. Similar to
CelebA, LFWA is divided into a training set (6263 images)
and a test set (6880 images).

MAAD (Terhörst et al., 2020) is a newly-released mas-
sive facial attribute dataset. It is constructed based on the
VGGFace2 database (Cao et al., 2018b) and consists of 3.3M
facial images with 123.9M attribute labels of 47 attributes.
In MAAD, 3,138,862 images and 169,178 images are used
for training and testing, respectively.

In the first stage, we use the default training set (without
labels) to train three auxiliary tasks for CelebA and LFWA.
We randomly select 200,000 images from the training set
(without labels) to train three auxiliary tasks for MAAD. In
the second stage, we randomly choose a proportion of the
training set (with labels) of CelebA, LFWA, or MAAD to
fine-tune the FAR model. Moreover, we use the default vali-
dation and test sets ofCelebA andLFWA,whilewe randomly
select 20,000 images from the test set of MAAD, to evalu-
ate the performance. All the experiments are performed 10
times, and the average recognition accuracy is reported.

4.2 Implementation Details

We use PreAct ResNet-18 (without pre-training) as the
backbone of TB and each region branch in Rk

B (k ∈
{W ,U , M, L}) is comprised of four cascaded DCA mod-
ules. In PRT, the number of patches per side m is set to 3.
Hence, there are 3×3 = 9 patches in total. Each facial image
I in unlabeled facial data is first resized to 255 × 255, and
then 9 patches with the size of 85×85 are cropped. Finally, a
patch with the size of 64×64 is randomly cropped from each
85×85 patch and resized to 224×224. Such a way prevents
the model from using low-level texture statistics, which are
not advantageous for the FAR task. In PST and PCT, a patch
with the size of 75×75 is randomly cropped from each facial
image, and then resized to 224 × 224. In PCT, the number
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Table 1 Group configuration of
facial component labels and
attribute labels in CelebA,
LFWA, and MAAD

Groups Component
Labels

Attribute Labels in
CelebA/LFWA

Attribute Labels in MAAD

Whole Group Background,
Skin

5_o_Clock Shadow,
Attractive, Blurry,
Chubby, Heavy
Makeup, Male, Oval
Face, Pale Skin,
Straight Hair, Smiling,
Wavy Hair, Young

Male, Young, Middle Aged,
Senior, Asian, White, Black
Shiny Skin, Wavy_Hair,
5_o_Clock_Shadow,
Oval_Face, Square_Face,
Round_Face, Chubby,
Smiling, Heavy_Makeup,
Attractive

Upper Group Left Eyebrow,
Right Eyebrow,
Left Eye, Right
Eye, Eye
Glasses, Hair,
Hat

Arched Eyebrows, Bags
Under Eyes, Bald,
Bangs, Black Hair,
Blond Hair, Brown
Hair, Bushy
Eyebrows, Eyeglasses,
Gray Hair, Narrow
Eyes, Receding
Hairline, Wearing Hat

Bald, Receding Hairline,
Bangs, Black_Hair, Blond
Hair, Brown Hair, Gray Hair,
Obstructed Forehead, Fully
Visible Forehead, Brown
Eyes, Bags Under Eyes,
Bushy Eyebrows, Arched
Eyebrows, Wearing Hat, No
Eyewear, Eyeglasses

Middle Group Left Ear, Right
Ear, Ear Ring,
Nose

Big Nose, High
Cheekbones, Pointy
Nose, Rosy Cheeks,
Sideburns, Wearing
Earrings

Rosy Cheeks, Sideburns, High
Cheekbones, Big Nose,
Pointy Nose, Wearing
Earrings

Lower Group Mouth, Upper
Lip, Lower Lip,
Neck,
Necklace,
Cloth

Big Lips, Double Chin,
Goatee, Mustache,
Mouth Slightly Open,
No Beard, Wearing
Lipstick, Wearing
Necklace, Wearing
Necktie

No Beard, Mustache, Goatee,
Double Chin,Mouth Closed,
Big Lips, Wearing Necktie,
Wearing Lipstick

of dominant facial components v is set to 9. The number of
attributes C is 40 for CelebA and LFWA, and 47 for MAAD.
The number of facial components J is 19.

We use PyTorch to implement SPL-Net, and all the exper-
iments are performed on four GTX 2080 GPUs. For the first
stage, the batch size is set to 40, and the model is trained for
80 epochs. The number of steps to update the discriminator
D is set to 3. The values of λ1 and λ2 in Eq. (16) are empiri-
cally set to 0.05 and 0.50, respectively. For the second stage,
the batch size is set to 128, and the model is trained for 60
epochs.

During training, the Adam optimizer (Kingma & Ba,
2014) is adopted with the initial learning rate of 1 × 10−4,
β1 = 0.500, β2 = 0.999 and the weight decay of 5 × 10−4.
The warm-up strategy is used to update the learning rate,
where the value of the learning rate is linearly increased
from 1 × 10−3 to 3.5 × 10−3 in the first 15 epochs, and
then remains at 1.5×10−5 until the end of training. As men-
tioned in Sect. 3, both facial component labels in PCT and
facial attribute labels inFARare divided into four groups (i.e.,
a whole group, an upper group, a middle group, and a lower
group) according to different spatial locations. The detailed
group configuration is shown in Table 1. We use BiSeNetV2
(Yu et al., 2021), which is pre-trained on ImageNet and fine-

tuned with only limited labeled data, to generate semantic
masks for training auxiliary tasks. In particular, we select the
same number of training data in CelebA-HQ (Karras et al.,
2017) as that of limited labeled data in the facial attribute
dataset. All experiments on speed analysis are performed by
using a single NVIDIA GTX 2080 GPU.

4.3 Ablation Studies

To show the effectiveness of the proposed SPL-Net method,
we conduct ablation studies to evaluate the influence of
the DCA module, the whole region branch, MSS, different
auxiliary tasks (i.e., PRT, PST, and PCT), the SME loss,
adversarial training in MSS, the two-stage learning pro-
cedure, and critical parameters (including the number of
patches and the number of dominant facial components) on
the final recognition performance.

We evaluate the performance obtained by sixteen vari-
ants of the proposed method, including: 1) the baseline
method that uses the PreAct ResNet-18 backbone and two
FC layers to predict facial attributes; 2) the method (denoted
“SPL_CBAM”) that is the same as SPL_Net except that
the channel and spatial attention blocks in the DCA mod-
ule are replaced by those in CBAM; 3) the method (denoted
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Table 2 The details of sixteen
variants of SPL-Net

Variants DCA MSS PRT PST PCT AT W SME TS

Baseline – – – – – – – – –

SPL_CBAM CBAM � � � � � � � �
SPL_w/o_whole � � � � � � – � �
MSS � � – – – – – – �
SPL_R – – � – – – – – �
SPL_S – – – � – – – – �
SPL_C � � – – � � � – �
SPL_C_w/o_A � � – – � – – – �
SPL_RS – – � � – � � – �
SPL_RC � � � – � � � – �
SPL_SC � � – � � � � – �
SPL_w/o_A � � � � � – – � �
SPL_w/o_SME � � � � � � � – �
SPL_L2 � � � � � L2 – � �
SPL_Semi � � � � – – – � One-stage

SPL-Net � � � � � � � � �

AT denotes adversarial training. W denotes the whole region branch. TS denotes the two-stage learning
procedure

“SPL_w/o_whole”) that is the same as SPL_Net except that
the whole region branch is replaced by the aggregation (i.e.,
the feature fusion block) after adversarial training in the sec-
ond stage; 4) the method (denoted “MSS”) that is based
on MSS and the FAR subnetwork; Note that both the base-
line and MSS methods are directly trained by using limited
labeled data. 5) the method (denoted “SPL_R”) that only
adopts PRT as the auxiliary task; 6) the method (denoted
“SPL_S”) that only adopts PST as the auxiliary task; 7) the
method (denoted “SPL_C”) that only adopts PCT as the aux-
iliary task; 8) the method (denoted “SPL_C_w/o_A”) that
only adopts PCT as the auxiliary taskwithout using adversar-
ial training; 9) the method (denoted “SPL_RS”) that adopts
PRT and PST as the auxiliary tasks; 10) the method (denoted
“SPL_RC”) that uses PRT and PCT as the auxiliary tasks; 11)
the method (denoted “SPL_SC”) that uses PST and PCT as
the auxiliary tasks; 12) the method (denoted “SPL_w/o_A”)
that jointly trains PRT, PST, and PCT in an integrated net-
work but without using adversarial training in MSS; 13)
the method (denoted “SPL_w/o_SME”) that jointly com-
bines PRT, PST, and PCT but without using the SME loss
in PCT; 14) the method (denoted “SPL_L2”) that is the same
as SPL_Net except that adversarial training is replaced by a
simple contrastive learning method (based on the L2 loss);
15) the method (denote “SPL_semi”) that jointly trains PRT,
PST, and FAR in a semi-supervised manner; and 16) the pro-
posed SPL-Net method.

The details of these variants are summarized in Table 2.
The results obtained by these variants with the different pro-
portions of labeled training data on CelebA, LFWA, and
MAAD are given in Tables 3, 4, and 5, respectively.

Influence of theDCAModuleWevalidate the effectiveness of
DCAvia replacing the attentionblocks in theDCAmodule by
those in CBAM. Experimental results show that SPL-Net can
achieve slightly better performance than SPL_CBAM. This
can be ascribed to the superiority of the SE block, which
effectively recalibrates channel-wise feature responses by
exploiting interdependencies between different channels.

Influence of theWhole Region BranchWevalidate the impor-
tance of the whole region branch in MSS. The adversarial
training introduced in MSS encourages the whole region
branch to extract features close to the aggregated features
from the three local branches. Therefore, we can replace
the whole region branch by the aggregation (i.e., the feature
fusion block) after adversarial training in the second stage.

We can see that SPL_w/o_whole cannot achieve satisfac-
tory performance. This is because the feature fusion block
(consisting of only a simple convolutional layer and a batch
normalization layer) cannot successfully learn powerful fea-
ture representations for classifying facial attributes, when
limited labeled data are given. In contrast, the whole region
branch involving cascaded DCA modules provides better
feature extraction capability and can be more effectively
fine-tuned by taking the whole facial images as inputs in
the second stage.
Influence of the Multi-branch Shared Subnetwork (MSS)
MSS includes a task-shared branch and four region branches
(each branch is composed of cascaded DCA modules). As
observed from Tables 3, 4, and 5, the MSS method obtains
better performance than the baseline method on all the three
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Table 3 Ablation studies: the
recognition accuracy (%)
obtained by sixteen variants of
SPL-Net with the different
proportions of labeled training
data on the CelebA dataset

CelebA

Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of labeled samples 33 325 843 1627 3225 162,770

Baseline 76.34 82.16 85.23 87.60 88.40 90.90

SPL_CBAM 79.03 86.95 88.15 88.77 89.53 91.68

SPL_w/o_whole 78.21 85.65 87.24 86.34 88.43 90.55

MSS 76.92 83.97 86.33 87.82 88.85 91.49

SPL_R 78.38 85.25 87.67 88.58 89.13 91.70

SPL_S 77.53 84.58 87.13 87.87 88.77 91.53

SPL_C 77.23 83.87 86.40 87.59 88.65 91.38

SPL_C_w/o_A 76.95 83.35 86.01 87.02 88.10 91.21

SPL_RS 78.52 85.77 87.97 88.97 89.75 91.70

SPL_RC 78.50 86.14 87.65 88.76 89.32 91.71

SPL_SC 78.04 85.15 87.32 88.01 88.98 91.60

SPL_w/o_A 78.89 86.68 88.09 87.66 88.23 91.66

SPL_w/o_SME 78.83 86.60 87.86 87.41 88.05 91.53

SPL_L2 78.01 85.84 87.21 86.95 87.43 89.64

SPL_semi 75.23 83.12 85.75 85.94 86.45 89.57

SPL-Net 79.33 87.02 88.21 88.97 89.83 91.78

The best results are boldfaced

Table 4 Ablation studies: the
recognition accuracy (%)
obtained by sixteen variants of
SPL-Net with the different
proportions of labeled training
data on the LFWA dataset

LFWA

Proportion 0.5% 5% 10% 20% 50% 100%
Number of labeled samples 31 313 626 1252 3131 6263

Baseline 67.37 73.92 77.04 80.90 83.65 85.76

SPL_CBAM 71.72 78.89 82.01 84.23 85.80 86.58

SPL_w/o_whole 70.25 77.47 80.33 82.21 83.15 85.60

MSS 68.35 74.96 78.79 82.14 84.53 86.14

SPL_R 69.68 77.01 80.85 83.19 85.25 86.59

SPL_S 68.53 76.01 79.79 82.37 84.70 86.32

SPL_C 68.42 75.51 79.22 82.10 84.31 86.01

SPL_C_w/o_A 68.03 75.30 78.87 81.81 83.65 85.98

SPL_RS 70.15 77.45 81.59 83.31 85.23 86.47

SPL_RC 70.31 77.54 81.60 83.42 85.42 86.54

SPL_SC 69.25 76.15 79.31 82.52 84.88 86.46

SPL_w/o_A 71.30 78.34 81.05 82.84 83.51 85.01

SPL_w/o_SME 71.22 78.40 81.21 82.35 83.81 85.03

SPL_L2 70.58 77.46 80.47 81.21 81.63 83.45

SPL_semi 68.30 70.14 74.25 77.80 80.05 83.01

SPL-Net 71.88 79.20 82.12 84.43 85.86 86.77

The best results are boldfaced

datasets. More specifically, the MSS method improves the
performance by 0.58% on CelebA, 0.98% on LFWA, and
0.57% on MAAD, when 0.02%, 0.5%, and 0.02% of labeled
training data are respectively used. The above results show
the effectiveness of MSS, which can extract region-specific
features according to the regions of interest, for improving
the FAR performance.

Influence of Different Auxiliary Tasks SPL-Net outperforms
theMSSmethod by 2.41% on CelebA, 3.53% on LFWA, and
5.40% on MAAD when 0.02%, 0.5%, and 0.02% of labeled
training data are respectively used. Generally, when a smaller
proportion of labeled training data is employed, the improve-
ments obtained by SPL-Net are more evident. In particular,
SPL-Net outperforms the baseline method (2.99%, 4.51%,
and 5.97% improvements on CelebA, LFWA, and MAAD,
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Table 5 Ablation studies: the
recognition accuracy (%)
obtained by sixteen variants of
SPL-Net with the different
proportions of labeled training
data on the MAAD dataset

MAAD

Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of labeled samples 40 400 1000 2000 4000 200,000

Baseline 63.04 67.18 70.25 71.19 74.92 85.86

SPL_CBAM 68.83 73.69 76.21 77.88 79.05 85.67

SPL_w/o_whole 67.21 72.39 75.37 76.70 78.75 84.21

MSS 63.61 67.72 70.90 73.67 75.32 85.88

SPL_R 67.55 70.50 73.55 76.92 78.59 85.71

SPL_S 66.83 69.13 72.41 75.87 77.21 85.34

SPL_C 66.65 68.14 71.86 75.01 76.93 85.06

SPL_C_w/o_A 66.31 67.79 70.87 74.31 76.44 85.02

SPL_RS 67.83 71.56 74.30 77.15 79.01 85.92

SPL_RC 67.76 71.67 74.81 77.17 78.90 85.80

SPL_SC 67.13 70.55 73.34 75.99 78.15 85.13

SPL_w/o_A 68.45 72.41 75.83 76.14 78.20 84.89

SPL_w/o_SME 68.55 73.24 76.01 77.51 78.05 85.11

SPL_L2 67.13 71.53 74.81 75.57 76.25 84.14

SPL_semi 65.45 69.21 72.57 73.89 75.10 84.12

SPL-Net 69.01 73.98 76.39 77.97 79.21 85.94

The best results are boldfaced

respectively) when 0.02%, 0.5%, and 0.02% of labeled train-
ing data are respectively used. This validates the importance
of exploiting the spatial-semantic relationship to ensure the
performance of the SPL-Net method.

PRT exploits the spatial information of facial images
based on self-supervised learning. Compared with SPL_S
and SPL_C, SPL_RS and SPL_RC give higher accuracy on
the CelebA, LFWA, and MAAD datasets. Moreover, SPL-
Net also achieves better recognition accuracy than SPL_SC.
The above results show the effectiveness of PRT, which takes
advantage of spatial information to improve the FAR perfor-
mance in the case of limited labeled data.

PST leverages semantic segmentation to extract the fine-
grained semantic information from facial images. As shown
in Tables 3, 4 and 5, SPL_RS and SPL_SC obtain higher
accuracy than SPL_R and SPL_C, respectively. Introduc-
ing the pixel-level semantic information in the first stage is
helpful to improve the final FAR performance in the sec-
ond stage. In comparison with SPL_RC, SPL-Net achieves
higher accuracy (e.g., 0.83%, 1.57%, and 1.25% improve-
ments on CelebA, LFWA, and MAAD, respectively, when
0.02%, 0.5%, and 0.02% of labeled training data are respec-
tively used). Hence, the pixel-level semantic segmentation is
beneficial to boost the final FAR performance.

PCT capitalizes on the semantic relationship to identify
facial components. SPL_RC and SPL_SC achieve higher
accuracy than SPL_R and SPL_S, respectively. Compared
with SPL_RS, SPL_w/o_A also improves the performance
on CelebA, LFWA, and MAAD (i.e., 0.37%, 1.15%, and
0.62% improvements in terms of recognition accuracy on

CelebA, LFWA, and MAAD when 0.02%, 0.5%, and 0.02%
of labeled training data are adopted, respectively). There-
fore, the image-level semantic information is also important
to enhance the FAR performance with limited labeled data.

By combing PRT, PST, and PCTwith adversarial training,
SPL-Net gives the top performance among all the vari-
ants. Therefore,modeling the spatial-semantic relationship
of facial images is advantageous for the FAR task.
Influence of the Spatial Mutual Exclusion (SME) Loss We
evaluate the importance of the SME loss in Tables 3, 4 and
5. Compared with SPL_Net, SPL_w/o_SME obtains worse
performance (0.50%, 0.66%, and 0.46% drop on CelebA,
LFWA, and MAAD, respectively, when 0.02%, 0.5%, and
0.02% of labeled training data are respectively used). By
minimizing the SME loss, SPL-Net explicitly enforces dif-
ferent local branches to focus on their corresponding regions,
benefiting the model to extract region-specific features. This
improves the performance of the FAR model when limited
labeled data are used for fine-tuning.

Influence of the Adversarial Training Strategy FromTables 3,
4, and 5, in all six proportions on three datasets, SPL-
Net outperforms SPL_w/o_A (e.g. 0.44% improvements
on CelebA, 0.58% improvements on LFWA, and 0.56%
improvements on MAAD, when 0.02%, 0.5%, and 0.02%
of labeled training data are respectively used). Compared
with SPL_C_w/o_A, SPL_C obtains higher performance.
The above results demonstrate the importance of the adver-
sarial training strategy adopted in MSS.

Moreover, we compare our adversarial learning with a
simple contrastive learning method (we adopt the L2 loss
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Fig. 5 Ablation studies:
Influence of the number of
patches (the first row) and the
number of dominant facial
components (the second row) on
the final performance when
0.5%, 10% and 0.5% of the
labeled training data of a
CelebA, b LFWA, and c MAAD
are used, respectively

between the features from the whole region branch and the
aggregated features from the three local branches). We can
see that our method with adversarial learning achieves much
better performance than that with contrastive learning (i.e.,
SPL_L2). Adversarial training is a generative model, which
matches the distribution of generated features from thewhole
region branch to the distribution of aggregated features from
the three local branches. Adversarial training pursues dis-
tribution consistency, enabling different branches to learn
diverse feature representations. Such a way benefits feature
extraction of the FAR task. In contrast, contrastive learning
only reduces the distances between two features to be as close
as possible, limiting the diversity of local branches.

Influence of the Two-stage Learning Procedure SPL-Net
adopts the two-stage learning procedure (i.e., performing
auxiliary tasks with large-scale unlabeled data in the first
stage and performing FAR with limited labeled data in the
second stage). Alternatively, we can design a one-stage learn-
ing method that performs multi-task learning (based on the
multi-branch architecture) in a semi-supervised manner. To
be specific, two branches perform PRT and PST (trainedwith
large-scale unlabeled data), while one branch performs FAR
(trained with limited labeled data). In this manner, we can
jointly train these tasks in a single stage.

From Tables 3, 4, and 5, we can see that SPL_semi based
on one-stage learning achieves much worse results than
SPL-Net based on two-stage learning. This is because the
one-stage learning method does not fully exploit the spatial-
semantic relationship of facial images. The joint learning of
these tasks cannot effectively guide the model to extract dis-
criminative features for predicting facial attributes. Note that
multi-task learning can boost the performance in the case that

multiple tasks are correlated or complementary to each other
(Zhao et al., 2018). However, PRT, PST, and FAR are weak
in terms of task relevance.

In contrast, the two-stage learning procedure follows the
pre-training and fine-tuning paradigm. This shows the impor-
tance of obtaining a powerful pre-trained model, as validated
in recent research (Chen et al., 2021).

Influenceof theNumberofPatchesm×mWeevaluate the per-
formance of SPL-Net with the different numbers of patches
m × m (including 1 × 1, 2 × 2, 3 × 3, and 4 × 4) in PRT.
The experimental results on CelebA, LFWA, andMAAD are
shown in the first row of Fig. 5. SPL-Net achieves the best
performance, when the number of patches m × m is set to
3 × 3. When the number of patches is larger, the semanti-
cally consistent facial components (such as the eye, nose, and
mouth) are over-segmented into small patches. On the other
hand, when the number of patches is smaller, the large patch
involves many facial components. In both cases, the feature
extraction capability of PRT to exploit the spatial information
is adversely affected.

Influence of the Number of Dominant Facial Components
v We further evaluate the influence of the number of domi-
nant facial components in PCT on the final performance. The
experimental results on three datasets are given in the second
row of Fig. 5. Our SPL-Net method achieves the best recog-
nition performance when the value of v is set to 9. Note that
the input facial patch of PCT is randomly cropped from the
facial image. Hence, some facial components involve only a
few pixels. On the one hand, when the values of v are too
large, the facial componentswith a small number of pixels are
chosen as dominant facial components. On the other hand,
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Fig. 6 Semantic masks generated by SPL-Net with (denoted w) and
without the label smoothing strategy (denoted w/o) on a CelebA, b
LFWA, and c MAAD

Fig. 7 The correlationmaps of seven randomly selected facial attributes
obtained by a the baseline and b SPL-Net on CelebA

when the values of v are too small, some dominant facial
components are ignored. This is harmful to learn the image-
level semantic information. Both cases lead to performance
degradation.

4.4 Visualization

In this subsection, we visualize several examples of
semantic masks generated by SPL-Net with and without the
label smoothing strategy. The results are illustrated in Fig. 6.

Fig. 8 Visualization of heat maps from different region branches of
MSS: a the upper region branch, b the middle region branch, c the
lower region branch, and d the whole region branch on CelebA

Moreover, we also plot the correlation maps of several ran-
domly chosen facial attributes obtained by the baseline and
SPL-Net methods, as shown in Fig. 7. We randomly choose
seven facial attributes, and calculate the correlation map
based on the predicted outputs of the trained models. Finally,
we show the heat feature maps (we employ the attentive fea-
ture maps as done in Ruan et al. (2022)) from the four region
branches of MSS in Fig. 8. Here, we employ 0.2% of labeled
training data of CelebA to train SPL-Net and the baseline.

From Fig. 6, compared with SPL-Net without the label
smoothing strategy, SPL-Net is able to generate the semantic
masks with much less noise. This validates the importance
of the label smoothing strategy. Based on accurate semantic
masks, PST can capture the pixel-level semantic information
more effectively. Such a manner is beneficial for training
MSS. Notice that there are some false detected masks. For
example, in the last column of LWFA in Fig. 6, the “ear" and
“nose" are falsely detected since there are a small number of
pixels for these facial components in the image. Meanwhile,
in the last column of MAAD in Fig. 6, most pixels in the
facial patches are classified as “face”, due to the lack of facial
details caused byblurring.However, the false-detectedmasks
have no significant influence on the final performance since
the corresponding facial components are not dominant, and
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the distorted facial details in blurry patches do not greatly
contribute to the learning process of PST.

From Fig. 7, SPL-Net shows better correlation responses
between facial attributes than the baseline method. For
instance, the “blond_hair" attribute is negatively related to
the “brown_hair" attribute (the correlation value is −0.47
obtained bySPL-Net and that is−0.24 by baseline),while the
“sideburns" and “blond_hair" attributes are not so strongly
correlated with each other (the correlation value is 0.054
obtained by SPL-Net and that is −0.68 by baseline).

In Fig. 8, the warm-toned parts of an image correspond
to the regions with large values in the feature map, and vice
versa. We can see the feature maps from different region
branches focus on different facial regions. In particular, for
the three local branches, their corresponding feature maps
concentrate on local regions. For the whole region branch,
its corresponding feature maps tend to pay attention to the
whole facial regions. This can be ascribed to the MSS struc-
ture and the PCT subnetwork, which are supervised with the
adversarial loss, the SME loss, and the classification loss.

4.5 Comparison with State-of-the-Art Methods

In this subsection,we compare the proposedSPL-Netmethod
with several state-of-the-art methods, including five super-
vised FAR methods (DMM (Mao et al., 2020), SlimCNN
(Sharma & Foroosh, 2020), AFFAIR (Li et al., 2018), PS-
MCNN (Cao et al., 2018a), and FAN (He et al., 2018a)), five
self-supervised learning methods (DeepCluster (Caron et al.,
2018), JigsawPuzzle (Noroozi & Favaro, 2016), Rot (Gidaris
et al., 2018), MoCo (He et al., 2020), and SimCLR (Chen et
al., 2020)), and two semi-supervised learning methods (Fix-
Match (Sohn et al., 2020) and VAT (Miyato et al., 2018)),
on the CelebA, LFWA, and MAAD datasets, respectively.
Our previous SSPL method (Shu et al., 2021) is also evalu-
ated for performance comparison. In particular, we evaluate
two versions of SSPL (i.e., SSPL-w and SSPL-p), where
SSPL-w and SSPL-p indicate that the facial parsing mod-
els are trained on the whole CelebA-HQ and limited labeled
data of CelebA-HQ (same as SPL-Net), respectively. We re-
trained the models (including DeepCluster, JigsawPuzzle,
Rot, MoCo, SlimCLR, FixMatch, and VAT) on a series of
experiments according to the publicly available codes from
their papers. Note that the results obtained by four state-of-
the-art methods (DMM, AFFAIR, PS-MCNN, and FAN) are
not listed on MAAD since their source codes are not pub-
licly available. The results of these methods on CelebA and
LFWA are taken from their respective papers.

For five supervised FAR methods, we only leverage the
available labeled training data to train the FAR models. For
self-supervised learning methods, we use all the unlabeled
training data to obtain the pre-trained models in the pretext
task, and then use the different proportions of labeled train-

ing data for fine-tuning in the downstream FAR task. For
semi-supervised learning methods, we simultaneously train
the models using both unlabeled and labeled training data.
The accuracy obtained by all the competing methods with
the different proportions of labeled training data on CelebA,
LFWA, and MAAD are shown in Tables 6, 7, and 8.

We can observe that, compared with several state-of-the-
art FAR methods (including DMM, SlimCNN, AFFAIR,
and FAN), our SPL-Net method shows similar or better
performance on the three datasets when 100% of labeled
data are used to train the FAR models. State-of-the-art
FAR methods are capable of extracting discriminative fea-
tures for classifying facial attributes from large-scale labeled
training data. Note that DMM predicts facial attributes
based on a dynamic weighting scheme and an adaptive
thresholding strategy. AFFAIR takes advantage of a unified
transformation-localization architecture to capture a hier-
archy of spatial transformations. Therefore, it can classify
facial attributes without relying on landmark annotations or
landmark detectors. PS-MCNN develops a network archi-
tecture consisting of four task-specific networks (TSNets)
and a shared network (SNet) to extract features. FAN lever-
ages abstraction images generated by GAN to locate facial
parts. In contrast, SPL-Net makes full use of three auxiliary
tasks, which can capture fine-grained spatial and semantic
information for FAR. This demonstrates the effectiveness of
the pre-trained MSS in the auxiliary tasks. Moreover, the
proposed method achieves much better performance (from
79.90% to 87.02% on CelebA, from 70.90% to 79.20%
on LFWA, and from 64.48% to 73.98% on MAAD) than
Slim-CNN when only a small proportion of training data
(i.e., 0.2%, 0.5%, or 0.2%) is used. This is because that we
jointly train the auxiliary tasks to exploit the spatial-semantic
relationship on unlabeled facial data. Therefore, effective
semantic-aware global and local features can be extracted
for the FAR task.

The SPL-Net method significantly outperforms the com-
peting context-based self-supervised learning methods (i.e.,
DeepCluster, JigsawPuzzle, and Rot) under the small pro-
portions of labeled training data. Compared with Rot, our
method obtains 3.77%, 4.80%, and 2.92% improvements
on CelebA, LFWA, and MAAD, when 0.2%, 5%, and
0.2% of labeled data are used, respectively. Notice that,
when less labeled training data are used, the performance
improvements obtained by our method are more evident
than the competing self-supervised learning methods. These
results indicate the good generalization ability of SPL-Net
to perform FAR with limited labeled data. SPL-Net effec-
tively exploits both spatial and semantic information on
unlabeled facial data by leveraging three auxiliary tasks.
Moreover, compared with contrastive learning-based self-
supervised methods (i.e., MoCo and SimCLR), SPL-Net
also achieves better accuracy. In particular, SPL-Net outper-
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Table 6 The recognition accuracy (%) obtained by our proposed SPL-Net method and several state-of-the-art methods with the different proportions
of labeled training data on the CelebA dataset

CelebA

Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of labeled samples 33 325 843 1627 3225 162,770

DMM (Mao et al., 2020) – – – – – 91.70

SlimCNN (Sharma & Foroosh, 2020) 67.32 79.90 80.20 80.96 82.32 91.24

AFFAIR (Li et al., 2018) – – – – – 91.45

PS-MCNN (Cao et al., 2018a) – – – – – 92.98

FAN (He et al., 2018a) – – – – – 91.81

DeepCluster (Caron et al., 2018) 72.87 83.21 86.13 87.46 88.86 91.68

JigsawPuzzle (Noroozi & Favaro, 2016) 71.96 82.88 84.71 86.25 87.77 91.57

Rot (Gidaris et al., 2018) 73.82 83.25 86.51 87.67 88.82 91.69

MoCo (He et al., 2020) 78.34 85.09 87.44 88.43 89.06 91.66

SimCLR (Chen et al., 2020) 79.22 86.24 88.01 88.63 89.34 91.72

FixMatch (Sohn et al., 2020) 69.45 80.22 84.19 85.77 86.14 89.78

VAT (Miyato et al., 2018) 72.13 81.44 84.02 86.30 87.28 91.44

SSPL-w (Shu et al., 2021) 78.21 86.67 88.05 88.84 89.58 91.77

SSPL-p (Shu et al., 2021) 77.88 85.86 87.34 87.10 88.02 91.43

SPL-Net (Ours) 79.33 87.02 88.21 88.97 89.83 91.78

The best results are boldfaced

Table 7 The recognition accuracy (%) obtained by our proposed SPL-Net method and several state-of-the-art methods with the different proportions
of labeled training data on the LFWA dataset

LFWA

Proportion 0.5% 5% 10% 20% 50% 100%
Number of labeled samples 31 313 626 1252 3131 6263

DMM (Mao et al., 2020) – – – – – 86.56

SlimCNN (Sharma & Foroosh, 2020) 60.54 70.90 71.49 72.12 73.45 76.02

AFFAIR (Li et al., 2018) – – – – – 86.13

PS-MCNN (Cao et al., 2018a) – – – – – 87.36

FAN (He et al., 2018a) – – – – – 85.20

DeepCluster (Caron et al., 2018) 63.97 74.21 77.42 80.77 84.27 85.90

JigsawPuzzle (Noroozi & Favaro, 2016) 63.32 73.90 77.01 79.56 83.29 84.86

Rot (Gidaris et al., 2018) 64.08 74.40 76.67 81.52 84.90 85.72

MoCo (He et al., 2020) 71.71 78.08 80.15 82.56 84.92 86.15

SimCLR (Chen et al., 2020) 70.49 78.63 80.66 82.73 85.44 86.24

FixMatch (Sohn et al., 2020) 62.87 71.42 72.78 75.10 80.87 83.84

VAT (Miyato et al., 2018) 62.96 72.19 74.42 76.26 80.55 84.68

SSPL-w (Shu et al., 2021) 71.64 78.68 81.65 83.45 85.43 86.53

SSPL-p (Shu et al., 2021) 70.43 76.23 89.26 82.87 84.01 86.21

SPL-Net (Ours) 71.88 79.20 82.12 84.43 85.86 86.77

The best results are boldfaced

forms the MOCO (0.99%, 0.17%, and 0.05% improvements
on CelebA, LFWA, and MAAD, respectively) when 0.02%,
0.5%, and 0.02% of labeled training data are respectively
used, while compared with SimCLR, the improvements are
0.11%, 1.39%, and 1.33% on CelebA, LFWA, and MAAD

when 0.02%, 0.5%, and 0.02% of labeled training data are
used, respectively.

Compared with those semi-supervised learning methods,
our SPL-Net method achieves considerably higher accuracy
in the case of limited labeled data. Among the compet-
ing semi-supervised learning methods, FixMatch simulta-
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Table 8 The recognition accuracy (%) obtained by our proposed SPL-Net method and several state-of-the-art methods with the different proportions
of labeled training data on the MAAD dataset

MAAD

Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of labeled samples 40 400 1000 2000 4000 200,000

SlimCNN (Sharma & Foroosh, 2020) 58.23 64.48 65.04 65.88 66.45 83.00

DeepCluster (Caron et al., 2018) 62.37 71.53 73.57 76.02 78.69 85.92

JigsawPuzzle (Noroozi & Favaro, 2016) 60.18 65.84 65.74 74.14 76.04 85.34

Rot (Gidaris et al., 2018) 67.42 71.06 75.35 77.09 78.95 85.81

MoCo (He et al., 2020) 68.96 71.87 75.59 77.83 78.88 85.82

SimCLR (Chen et al., 2020) 67.68 72.28 76.27 78.02 79.23 85.84

FixMatch (Sohn et al., 2020) 63.97 68.74 69.23 72.01 73.52 80.93

VAT (Miyato et al., 2018) 64.23 69.88 71.34 73.91 75.34 82.18

SSPL-w (Shu et al., 2021) 68.82 72.46 76.24 77.99 79.30 85.88

SSPL-p (Shu et al., 2021) 67.15 71.21 75.83 76.02 77.92 85.34

SPL-Net (Ours) 69.01 73.98 76.39 77.97 79.21 85.94

The best results are boldfaced

neously introduces consistency regularization and proxy-
labeling strategies, while VAT explores unlabeled data by
minimizing the distances between images and transformed
versions of these images. However, these methods focus on
holistic features, and thus they cannot effectively model the
spatial relationship, which plays a critical role for FAR. On
the contrary, SPL-Net learns the spatial-semantic correlation
of facial images and extracts fine-grained features, leading
to superior performance.

It is worth pointing out that both SSPL-w and SSPL-
p are based on ResNet-50, while SPL-Net uses a smaller
backbone (ResNet-18) with cascaded attention blocks. In
addition, SPL-Net and SSPL-p adopt limited labeled data
of CelebA-HQ for training the facial parsing model, while
SSPL-w leverages the whole CelebA-HQ for the training.
However, both SSPL-w and SSPL-p do not fully consider the
characteristics of FAR that facial attributes involve global and
local attributes. In contrast, SPL-Net adopts MSS with four
region branches to exploit the region-specific information for
different attributes andmodel the attribute group relationship
to boost the performance. Such a way benefits the model to
predict global and local attributes in the FAR task. There-
fore, SPL-Net can achieve higher performance than SSPL-w
and SSPL-p. The above results validate the importance of
exploiting the characteristics of facial attributes in designing
the network architecture for FAR with limited labeled data.

Compared with SSPL-w and SSPL-p, the performance
improvements of SPL-Net are not very significant on the
three facial attribute datasets. This can be ascribed to the
following four factors. First, the imbalanced class data dis-
tribution (Huang et al., 2019) (e.g., the imbalance ratios
between the minority classes and the majority classes on
the CelebA dataset are up to 1:43) exists in facial attribute

datasets. Second, many facial attributes, especially for sub-
jective attributes, have ambiguous annotations in these
datasets (Yan et al., 2022). Third, some facial attributes may
not be provided with positive samples due to limited labeled
data. Fourth, SPL-Net employsmuch less annotated data than
SSPL-w to train the facial parsing model, resulting in infe-
rior semantic masks for learning the auxiliary tasks. This can
affect the representation capability of the pre-trained model
obtained in the first stage. The above factors greatly increase
the training difficulty, making it extremely challenging to
significantly improve the accuracy on these datasets.

We further report the accuracy obtained by each attribute,
to more comprehensively evaluate different methods at one
round of test. The results are given in Table 9, where 0.2%
of labeled training data on CelebA are used. Experimental
results clearly show that SPL-Net improves the accuracy
corresponding to global attributes (such as the “Attractive”
and “Young” attributes) and local attributes (such as the
“Mouth_Open” and “Bangs” attributes), compared with the
other competing methods. In particular, SPL-Net outper-
forms SSPL (both SSPL-w and SSPL-p) on most of facial
attributes, showing the effectiveness of SPL-Net for FAR
with limited labeled data. Generally, it is easier to identify
objective attributes (such as the “Male” and “Hat” attributes)
than subjective attributes (such as the “Oval_Face” and
“Pointy_Nose” attributes). This is mainly because subjec-
tive attributes often appear in a subtle form, which makes the
FAR model more difficult to learn the decision boundary.

We also observe that some attributes (such as the “Bald”
attribute) are not chosen (i.e., only negative samples of these
attributes are provided for the training) when a small pro-
portion of labeled data are selected. However, the model can
still predict these attributes. This can be ascribed to the pow-

123



International Journal of Computer Vision

Ta
bl
e
9

T
he

re
co
gn

iti
on

ac
cu
ra
cy

(%
)
ob

ta
in
ed

by
ea
ch

at
tr
ib
ut
e
w
he
n
0.
2%

of
th
e
la
be
le
d
tr
ai
ni
ng

da
ta
of

C
el
eb
A
ar
e
us
ed

A
ttr
ib
ut
es

M
et
ho
ds

A
ttr
ac
tiv

e
M
ou
th
_

Sm
ili
ng

L
ip
st
ic
k

H
ig
h_

M
al
e

H
ea
vy
_

W
av
y_

O
va
l_

Po
in
ty
_

A
rc
he
d_

B
la
ck
_

B
ig
_

B
ig
_

O
pe
n

L
ip
st
ic
k

C
he
ek
bo
ne
s

M
ak
eu
p

H
ai
r

Fa
ce

N
os
e

E
ye
br
ow

s
H
ai
r

L
ip
s

N
os
e

Po
si
tiv

e
Sa

m
-

pl
es

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Sl
im

C
N
N

(S
ha
rm

a
&

Fo
ro
os
h,

20
20
)

52
51

53
53

53
60

59
63

70
71

71
73

67
78

D
ee
pC

lu
st
er

(C
ar
on

et
al
.,

20
18
)

75
66

74
90

67
69

67
64

70
71

72
73

67
79

Ji
gs
aw

Pu
zz
le

(N
or
oo
zi

&
Fa
va
ro
,2

01
6)

69
56

63
79

63
79

76
69

70
71

71
73

67
78

R
ot

(G
id
ar
is

et
al
.,
20
18
)

72
51

51
87

52
87

82
68

70
71

73
72

67
79

M
oC

o
(H

e
et

al
.,
20
20
)

74
80

87
91

82
93

87
67

71
71

77
73

67
80

Si
m
C
L
R

(C
he
n

et
al
.,

20
20
)

75
73

85
91

78
92

87
66

70
71

74
73

67
79

Fi
xM

at
ch

(S
oh
n

et
al
.,

20
20
)

63
54

73
78

66
86

71
67

69
66

70
77

59
78

V
A
T

(M
iy
at
o

et
al
.,
20
18
)

62
54

59
70

59
71

69
67

70
69

71
73

67
78

SS
PL

-w
(S
hu

et
al
.,
20
21
)

74
85

87
89

82
92

86
73

68
68

75
83

67
78

SS
PL

-p
(S
hu

et
al
.,
20
21
)

74
83

87
89

82
92

86
70

68
68

75
79

67
78

SP
L
-N

et
(O

ur
s)

76
87

88
91

82
94

86
73

71
71

75
83

67
81

A
ttr
ib
ut
es

M
et
ho
ds

Y
ou
ng

St
ra
ig
ht
_

B
ro
w
n_

B
ag
s_
U
nd
er
_

E
ar
ri
ng
s

N
o_

B
an
gs

B
lo
nd
_

B
us
hy
_

N
ec
kl
ac
e

N
ar
ro
w
_

5_
R
ec
ed
in
g_

H
ai
r

H
ai
r

E
ye
s

B
ea
rd

H
ai
r

E
ye
br
ow

s
E
ye
s

Sh
ad
ow

H
ai
rl
in
e

Po
si
tiv

e
Sa

m
-

pl
es

�
�

�
�

�
�

�
�

�
�

�
�

�

Sl
im

C
N
N

(S
ha
rm

a
&

Fo
ro
os
h,

20
20
)

76
78

82
79

79
85

84
87

87
86

85
90

91

123



International Journal of Computer Vision

Ta
bl
e
9

co
nt
in
ue
d

A
ttr
ib
ut
es

M
et
ho
ds

Y
ou
ng

St
ra
ig
ht
_

B
ro
w
n_

B
ag
s_
U
nd
er
_

E
ar
ri
ng
s

N
o_

B
an
gs

B
lo
nd
_

B
us
hy
_

N
ec
kl
ac
e

N
ar
ro
w
_

5_
R
ec
ed
in
g_

H
ai
r

H
ai
r

E
ye
s

B
ea
rd

H
ai
r

E
ye
br
ow

s
E
ye
s

Sh
ad
ow

H
ai
rl
in
e

D
ee
pC

lu
st
er

(C
ar
on

et
al
.,

20
18
)

76
79

82
80

79
85

84
87

87
86

85
90

92

Ji
gs
aw

Pu
zz
le

(N
or
oo
zi

&
Fa
va
ro
,2

01
6)

77
79

81
79

79
85

85
89

87
86

85
90

92

R
ot

(G
id
ar
is

et
al
.,
20
18
)

76
79

82
80

79
85

84
87

87
86

85
90

92

M
oC

o
(H

e
et

al
.,
20
20
)

77
79

82
80

80
88

84
87

87
86

85
90

92

Si
m
C
L
R

(C
he
n

et
al
.,

20
20
)

76
79

82
80

79
85

84
87

87
86

85
90

92

Fi
xM

at
ch

(S
oh
n

et
al
.,

20
20
)

76
67

79
76

78
86

49
89

87
74

79
90

91

V
A
T

(M
iy
at
o

et
al
.,
20
18
)

76
79

82
80

79
85

84
89

87
86

85
90

92

SS
PL

-w
(S
hu

et
al
.,
20
21
)

80
79

84
80

81
90

91
93

89
83

85
90

92

SS
PL

-p
(S
hu

et
al
.,
20
21
)

80
74

82
79

79
88

89
91

87
83

85
90

92

SP
L
-N

et
(O

ur
s)

82
79

84
80

81
91

93
94

89
86

85
90

92

A
ttr
ib
ut
es

M
et
ho
ds

N
ec
kt
ie

E
ye
gl
as
se
s

R
os
y_
C
he
ek
s

G
oa
te
e

C
hu
bb
y

Si
de
bu
rn
s

B
lu
rr
y

H
at

D
ou
bl
e_
C
hi
n

Pa
le
_S

ki
n

G
ra
y_
H
ai
r

M
us
ta
ch
e

B
al
d

A
ve
ra
ge

Po
si
tiv

e
Sa

m
-

pl
es

�
�

�
�

�
�

�
�

�
�

�
�

×
−

Sl
im

C
N
N

(S
ha
rm

a
&

Fo
ro
os
h,

20
20
)

93
94

93
95

95
96

95
96

95
96

97
96

98
79
.8
5

123



International Journal of Computer Vision

Ta
bl
e
9

co
nt
in
ue
d

A
ttr
ib
ut
es

M
et
ho
ds

N
ec
kt
ie

E
ye
gl
as
se
s

R
os
y_
C
he
ek
s

G
oa
te
e

C
hu
bb
y

Si
de
bu
rn
s

B
lu
rr
y

H
at

D
ou
bl
e_
C
hi
n

Pa
le
_S

ki
n

G
ra
y_
H
ai
r

M
us
ta
ch
e

B
al
d

A
ve
ra
ge

D
ee
pC

lu
st
er

(C
ar
on

et
al
.,

20
18
)

93
94

93
95

95
96

95
96

95
96

97
96

98
83
.3
8

Ji
gs
aw

Pu
zz
le

(N
or
oo
zi

&
Fa
va
ro
,2

01
6)

93
94

93
95

95
96

95
96

95
96

97
96

98
83
.0
1

R
ot

(G
id
ar
is

et
al
.,
20
18
)

93
94

93
95

95
96

95
96

95
96

97
96

98
83
.0
5

M
oC

o
(H

e
et

al
.,
20
20
)

93
94

93
95

95
96

95
96

95
96

97
96

98
86
.4
3

Si
m
C
L
R

(C
he
n

et
al
.,

20
20
)

93
94

93
95

95
96

95
96

95
96

97
96

98
85
.1
9

Fi
xM

at
ch

(S
oh
n

et
al
.,

20
20
)

93
93

92
95

95
96

95
96

95
96

97
96

98
80
.2
5

V
A
T

(M
iy
at
o

et
al
.,
20
18
)

93
94

93
95

95
96

95
96

95
96

97
96

98
81
.5
0

SS
PL

-w
(S
hu

et
al
.,
20
21
)

95
94

93
96

95
96

95
96

95
96

97
96

98
86
.5
5

SS
PL

-p
(S
hu

et
al
.,
20
21
)

94
94

93
95

95
96

95
96

95
96

97
96

98
85
.8
8

SP
L
-N

et
(O

ur
s)

95
94

93
96

95
96

95
96

95
96

97
96

98
87
.1
4

T
he

be
st
re
su
lts

ar
e
bo

ld
fa
ce
d

123



International Journal of Computer Vision

Table 10 The number of parameters and FLOPs obtained by different
methods on the CelebA dataset

Methods Params (M) FLOPs (G)

SimCLR – 35.298 6.231

SSPL First stage 29.063 18.343

Second stage 23.590 8.385

SPL-Net first stage 26.354 10.328

Second stage 21.721 4.132

Table 11 The inference time and speed obtained by different methods
on the CelebA dataset

Methods Inference time (ms) Speed (FPS)

SimCLR 12.17 82.15

SSPL 23.98 41.69

SPL-Net 10.56 94.70

The inference time and speed are measured in milliseconds (ms) and
frames per second (FPS), respectively

erful pre-trained model and the potential correlation among
attributes (e.g., the “Bald” attribute and the “Male” attribute
are highly correlated).Moreover, the number of positive sam-
ples with respect to these attributes is small in the test set (for
example, the “Bald” attribute has 423 positive samples and
19,539 negative samples). Note that all the competing meth-
ods are evaluated under the same settings (i.e., we use the
same randomly selected labeled training set and the same
test set at each round of test).

4.6 Computational Complexity

In this subsection, we analyze the computational complexity
of our proposed SPL-Netmethod.We also evaluate SSPL and
the SlimCLRmethod for a comparison.Weuse the number of
parameters (Params) and Floating-Point operations (FLOPs)
to evaluate the memory consumption and computational cost
of the model, respectively. Moreover, we adopt the inference
time and speed to measure the latency. We take the CelebA
dataset (0.2% of the labeled training data) for performance
evaluation.

Table 10 gives the number of parameters and FLOPs
obtained by SPL-Net, SSPL, and SlimCLR. SSPL has more
parameters and higher FLOPs than SPL-Net. This is because
SSPL adopts the larger ResNet-50 as the backbone. Both
SSPL and SPL-Net have higher memory consumption and
computational cost (in terms of Params and FLOPs) than
SimCLR, since they involve the two-stage learning proce-
dure. However, the second stage (i.e., the fine-tuning stage
based on limited labeled data) in SPL-Net has fewer param-
eters and smaller FLOPs than SimCLR.

The inference time and speed obtained by SPL-Net, SSPL,
and SlimCLR are reported in Table 11. We can observe that
the proposed SPL-Net obtains smaller inference time than
the other two competing methods. The inference speed of
SPL-Net is also faster than those of SSPL and SlimCLR.
Although the training complexity of SPL-Net is high, it still
obtains real-time inference speed. Therefore, SPL-Net can
be applicable in practice.

5 Conclusion

In this paper, we have proposed a novel SPL-Net method
to perform FAR with limited labeled data effectively. The
SPL-Net method involves a two-stage learning procedure.
For the first stage, three auxiliary tasks (PRT, PST, and PCT)
are jointly developed to exploit the spatial-semantic informa-
tion on large-scale unlabeled facial data, and thus a powerful
pre-trained MSS is obtained. For the second stage, only a
few number of labeled facial data are leveraged to fine-tune
the pre-trained MSS and an FAR model is finally learned.
Extensive experiments on the CelebA, LFWA, and MAAD
datasets have demonstrated the effectiveness of our proposed
method in comparison with several state-of-the-art methods
to address FAR in the case of limited labeled data.
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