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Abstract 
Although the least median of squares (LMedS) method 
and the least trimmed squares (LTS) method are said to 
have a high breakdown point (50%), they can break 
down at unexpectedly lower percentages of outliers 
when those outliers are clustered. In this paper, we 
investigate the breakdown of LMedS and the LTS when 
a large percentage of clustered outliers exist in the data. 
We introduce the concept of symmetry distance (SD) 
and propose an improved method, called the least 
trimmed symmetry distance (LTSD). The experimental 
results show the LTSD gives better results than the 
LMedS method and the LTS method particularly when 
there is a large percentage of clustered outliers and/or a 
large standard variance in the inlier population. 
 
1. Introduction  
To fit a model to noisy data (with large numbers of 
outliers) is a common task within the computer vision. 
Since it is unavoidable that data will be contaminated 
we require that all algorithms be robust for accurate 
estimation [2]. Robust regression methods can tolerate 
gross errors (outliers) [1][5].  
The most common form of regression analysis is the 
least squares (LS) method, which can achieve optimum 
results when data are corrupted by Gaussian distributed 
noise. However, this method is extremely sensitive to 
outliers (gross errors) and will break down when 
outliers exist in the data. 
Robust estimators with high breakdown point have been 
developed during the past three decades [1][7][8][16]. 
The least median of squares (LMedS) estimator and the 
least trimmed squares (LTS) estimator are the two most 
popular methods. The LMedS method and the LTS 
method are based the idea that the correct fit will 
correspond to the one with the least median of residuals 
(for LMedS) or the least sum of trimmed squared 
residuals (for LTS). This is true if the data are not 
contaminated or are contaminated by outliers which are 
not highly clustered. When large numbers of clustered 
outliers exist in the data, both LMedS and LTS may not 
fit the data correctly. The reason is that both LMedS and 
LTS only consider the residuals of the data points while 
they neglect other important characteristics of the 
model. Due to the affects of clustered outliers, the 
correct fit does not necessarily correspond to the fit with 
the least median of squared residual (for LMedS) or the 
least trimmed squared residuals (for LTS).  

Symmetry is very common and important in our world 
[19-32]. When we will fit circles, ellipses, or any 
symmetric object; one of the most basic features is 
symmetry. We introduce symmetry into robust model 
fitting, producing a method that works better than 
LMedS and LTS under a large number of clustered 
outliers. 
 
2. Robust estimators 
The classical linear model can be described in the 
followed form:  
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the error term ei is usually assumed to be normally 
distributed with mean zero and standard deviation σ.  
The ordinary least squares method [3] estimates  by θ̂
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Although the LS method has low computational cost 
and high efficiency, it is very sensitive to outliers. In 
fact, only one single outlier can affect the  result to a 
large degree. In order to reduce the influence of outliers, 
a number of robust estimators have been developed. 
Among these estimators, the maximum-likelihood-type 
estimators, i.e. the M-estimators, are best known [4][5]. 
 
2.1 M-estimators 
The essence of the M-estimator is to replace the squared  
residuals by another function of the residuals: 2
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where ρ  is a symmetric, positive-definite function with 
a unique minimum at zero. 
Different choices of ρ (ri) will yield different M 
estimators. Unfortunately, it has been proved that M 
estimators have a breakdown point of at most 1/(p+1), 
where p represents the dimension of parameter vector 
[1][6]. This means that the breakdown point will 
diminish when the dimension of parameter vector 
increases. 
 
2.2 The repeated median method 
Before the repeated median estimator, it was 
controversial that if it was possible to find a robust 
estimator with a high breakdown point. In 1982, Siegel 
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proposed the repeated median (RM) estimator with a 
high breakdown point of 50%[7].   
The repeated median method can be summarized as 
follows: For any p observations,  (xi1, yi1),…,(xip, yip). 
The parameter vector  can be 
calculated from the given data points. The jth coordinate 
of this vector is denoted by θ 

t
p )ˆ,...,ˆ(ˆ

1 θθθ =

j (i1,…,ip). Then the 
repeated median estimator is defined as  
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The time complexity of the repeated median estimator is 
O(nplogpn), which prevents its application to even 
relatively simple tasks such as  conic fitting. 
 
2.3 The least median of squares method 
In 1984 Rousseeuw proposed the least median of 
squares (LMedS). The LMedS family has excellent 
global robustness and a claimed high breakdown point 
(50%). In a relatively  short time, the LMedS estimator 
has been widely applied in computer vision problems.  
The LMedS method is based on the simple idea 
whereby one replaces the sum in least sum of squares by 
a median. Mathematically, the LMedS is given by  
                                                            (2.5) 2
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The solution of the LMedS can only be given by an 
exhaustive search. In order to reduce the time 
complexity of the LMedS method to a feasible value, 
the Monte Carlo type technique is adopted.  
If a p-subset consists of p good observations without 
contamination by outliers, the p-subset is “clean”. One 
performs, m times, random selections of p-tuples so that 
the probability P that at least one of the m p-tuples is 
“clean” is almost 1. Let ε be the fraction of outliers 
contained in the whole set of points. The probability P 
can be expressed as follows: 
                      P=1-(1-(1-ε)p)m                                      (2.6) 
In order to find the best solution corresponding to the p-
tuple which yields the approximately minimized value, 
P is required to be near 1. Accordingly, one can 
determine m for given values of ε, p and P by 

   
])-1(1log[
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If there are 50 percent of data contaminated by outliers, 
i.e. ε = 0.5, and we require P = 0.99, then, for circle 
fitting (p=3), we get m=35; for ellipses fitting (p=5), we 
get m=145. 
 
2.4 The least trimmed squares method 
The least trimmed squares (LTS) method has better 
statistical efficiency and local stability than the LMedS 
[8][1]. The LTS estimator is given by: 
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where  are the ordered squared 
residuals, h is the trimming constant - which can be set 
to a value in the range from n/2 to n . Thus  there will be 

h data points, out of n, used to estimate the parameters. 
LTS also employs the random sampling technique.  
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Generally speaking, there are two possible ways to yield 
the h-subsets: 
    1. Directly yield a random h-subset from the data 
points n. 
    2 Firstly generate a random p-subset. If the rank of 
this p-subset is less than p, randomly add data points 
until the rank is equal to p. Next, use this subset to 
compute parameters θ̂ j ( j=1,…p) and residuals ri ( 
i=1,…,n). Sort the residuals into 
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(
, and h-subset is 

set to:  H:={ ππ }. 
Usually, a h-subset generated by method (1) more likely 
includes outliers than if it is generated by method (2).  
 
2.5 Breakdown of LMedS And LTS 
Consider the contaminated distribution  [18][2]: 
                       F=(1-ε)F0+εH                                    (2.9) 
where F0 is an inlier distribution, and H is an outlier 
distribution. When the standard variance of F0 is small 
(<<1) and that of H is large or H is uniform distributed, 
the estimated parameters with the least median of the 
squared residuals (for LMedS) or the least sum of 
trimmed squared residuals (for LTS) will correspond to 
the correct fit. However, when the standard variance of 
F0 is big, and H is clustered distributed with high 
density, the case above is not always true again. Let us 
see an example: 

Fig.1  An example where the LMedS and LTS methods  
fail to fit a circle under clustered outliers residuals. 
 
In figure 1, a total 100 data were generated. The inliers 
F0 had 55 data points with radius 10.0 and a center at 
(0.0,0.0). F0 has one unit variance. 45 clustered outliers 
were added possessing a spherical bivariate normal 
distribution with one unit standard variance and a mean 
of  (22,7). As shown in figure 1, both LMedS and LTS 
failed to fit the circle: LMedS resulted in a fit with a 
radius of 12.2430 and center at (10.7113, 3.0125) ); the 
results obtained by LTS were that radius equalled 
15.7822 and center was at (8.0017, -0.5369). 
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Let us check the median of the residuals (for LMedS) 
and the sum of the trimmed squared residuals (for LTS) 
and we will find that fits that minimize these criterion  
do not always reflect the true case when clustered 
outliers exist in the data. The median of residuals of the 
true fit is 1.5169. However the median of residuals of 
the final result by the LMedS method is 1.2493. In fact, 
during the searching procedure, the LMS estimator 
missed the “good” fit and choose a fit with even smaller 
median – as it was designed to do! 
The reason that LTS failed is similar. LTS  finds the fit 
with the smallest trimmed squared residuals. For the 
estimate it produced, the sum of trimmed squared 
residuals is 13.0237. However, that statistics for the true 
fit is 30.6820! 
From the discussion above, we now see the reason that 
LMedS and LTS failed to fit the circle is they pay 
attention only to choosing the fit with the least median 
of residuals or the least sum of trimmed squared of 
residuals, omitting other characteristics of the data. 
Thus the resulting fits lost the most basic and common 
feature of circle—symmetry. 
 
3. The symmetry distance 
Symmetry exists almost everywhere in the world. A 
square, a cube, a sphere, and a lot of geometric patterns 
show symmetry. Architecture usually adopts symmetry. 
Symmetry is also an important parameter in physical 
and chemical processes and is an important criterion in 
medical diagnosis. Even we human beings show 
symmetry, (for instance, our faces and bodies are 
roughly symmetrical between right and left). Symmetric 
data should suggest symmetric models and data that is 
symmetrically distributed should be preferred as the 
inlier data (as opposed to the outlier. Considerable 
efforts have been focused on the detection of symmetry 
in images in regard to mirror symmetries [22][23] and 
in regard to circular symmetries [24][25]. Kirby etc. 
used the symmetric features of images for image 
compression [26]. Zabrodsky treated symmetry as a 
continuous feature and applied it in finding the 
orientation of symmetric objects [21]. Skewed 
symmetries in 3D structures have been extensively 
studied [28][29][30]. Symmetry has also been treated as 
a feature in cluster analysis [27].  We demonstrate here 
that symmetry can also be used as a feature to enhance 
the performance of robust estimators when fitting 
models with symmetric structure. 
 
3.1 Definition of symmetry 
There are many kinds of symmetry existing in the 
world. Generally speaking, symmetry can be classified 
into the followed basic types [20][21]. 
 

1. Mirror-symmetry: if an object is invariant under a 
reflection about a line (for 2D) or a plane (for 
3D). 

2. Cn-symmetry: if an object is invariant under 
rotation of n

π2 radians about its center (for 2D) 
or a line passing through its center (for 3D). 

3. Dn-symmetry:  if an object has both mirror-
symmetry and Cn-symmetry. 

4. Circular-symmetry: If an object hasC -
symmetry. 

∞

 
3.2 The symmetry distance 
The exact mathematical definition of symmetry [31][32] 
is insufficient to describe and quantify symmetry found 
both in the natural world and in the visual world.  
Su et al. [27] proposed a non-metric distance measure 
based on the concept of “point symmetry”. Given n 
points xi, i =1,…N and a reference vector C (e.g. the 
centroid of the data), the point symmetry distance 
between a point xj and C is defined as follows: 
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       (3.1) 

From (3.1) we can see that the point symmetry distance 
is non-negative definition. When xi=(2C-xj) exists, 
ds(xj,C)=0.  
However, according (3.1), one point could be used 
repeatedly as the “balancing point” with respect to the 
center. This does not seem to properly capture the 
notion of symmetry. In order to avoid one point being 
used as a “symmetric point” more than one time by 
other points, we refine the point symmetry distance 
between a point xj and C as follows: 
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whereℜ is a set of points that have been used as 
“symmetric point”. We propose a non-metric Symmetry 
Distance (SD): 

                 SD(x,C)= ∑
=

n

i
is CxD

n 1
),(1

                  (3.4) 

When the SD of a pattern is equal to 0.0, the pattern is 
perfectly symmetric; when the SD of a pattern is very 
big, the pattern has little symmetry.  
 
4. The proposed method 
In this paper, we present a novel robust method, we call 
LTSD, employing symmetry distance. We consider 
symmetry distance as its criteria. The steps of the LTSD 
method is described as follows:  
Step 1. Initialise h with [(n+p+1)/2] ≤ h ≤ n and the 
repetition count rt.  
Step 2. Randomly choose p-subset, and extend to a h-
subset H1 by the method (2) in subsection 2.4 
Step 3. Compute  by the LS method based on H1̂θ 1. 

Compute symmetry distance SD1 based on  and H1̂θ 1 
using (3.2) in section 3 and using the centre of the fit 
(circle or ellipse) as the reference vector C. Decrement 
rt and if rt is smaller than 0, go to step 4, otherwise, go 
to step 2.  We calculate the parameters based on a h-θ̂
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subset instead of a p-subset in order to improve the 
statistical efficiency. 
Step 4. Output with the lowest SD. θ̂
 
5. Experimental results 
In this section, we will show several examples using the 
proposed method to fit a model with symmetrical 
structures. Circle fitting and ellipses fitting have been 
very popular topics in the computer vision field. One of 
the obvious characteristics of circles and ellipses is that 
they are symmetric. We first present an example of 
circle fitting, to provide insights into the proposed 
method. We then present a relatively more complicated 
example of ellipses fitting. The results are compared 
with those of the LMedS method and the LTS method.  
 
5.1 Circle fitting. 
As shown in figure 1, 45 percent of clustered outliers 
were added to the original data. Because the LMedS and 
the LTS only paid attention to the residuals of the data 
points, their results were affected by the standard 
variance of the inliers and density of the clustered 
outliers. Therefore, they failed to fit the circle under a 
high percentage of clustered outliers. However, the 
proposed method pays attention not only to the residuals 
of the data, but also the symmetry of the object, this 
makes it find the right model (see figure 2.) 
 

-10 -5 0 5 10 15 20

-10

-5

0

5

10

By LTSD 

 
Fig. 2 Using the symmetry feature of the circle, the 
proposed the method found the approximately right 
results. 
 
LTSD is more stable, when there is a large variance of 
inliers, than LMedS and LTS. When the variance of 
inliers is large, LMedS and LTS will fail to fit the model 
by their criteria. LTSD, because it considers both the 
residuals and the symmetry if the data, can still correctly 
estimate the model. If we change the variance σ of the 
inliers (F0), while the 45% clustered outliers are drawn 
from a spherical bivariate normal distribution with one 
unit standard variance and mean (22,7), then we can get 
table 1. As shown in table 1, when the variance of 
inliers σ was small (e.g. 0.4), all three methods got the 
correct results. However, when σ was increased to 0.7, 

LTS first failed to fit the circle. In this case, both LTSD 
and LMedS correctly fitted the circle. When  σ was 1.0 
or 1.3, only LTSD correctly found the circle; LMedS 
and LTS both failed to fit the circle. 
  
 σ Xc (0.0) Yc (0.0) R (10.0) 
LTSD -0.3083 0.1879 9.9479 
LTS -0.2055 0.1366 9.8954 

LMedS 
0.4 

-0.2098 0.1342 9.9248 
LTSD -0.0699 0.0142 10.3030 
LTS 7.4093 -19.2381 29.8931 

LMedS 
0.7 

-0.0965 0.1501 10.1212 
LTSD -0.2510 -0.2106 9.8444 
LTS 13.6641 21.8484 17.3485 

LMedS 
1.0 

14.9724 7.4475 7.4507 
LTSD 0.8147 -0.0503 9.8923 
LTS 2.3155 11.7841 19.9118 

LMedS 
1.3 

13.9648 9.2348 8.2795 
Table 1. Comparison of the estimated parameters by 
LTSD, LTS, and LMedS in circle fitting under 55% 
inliers with different variance σ (and all having 45% 
clustered outliers). 
 
5.2 Ellipses fitting. 
Ellipses often occur in geometric shapes. Round objects 
and circles may be projected into ellipses in the 
perspective projection model. Thus ellipses are 
frequently used in computer vision for model matching. 
A general conic equation can be written as follows: 
             ax2 + bxy + cy2 + dx + ey + f = 0  
(a,b,c,d,e,f) are the parameters needed to find from the 
given data. When b2 < 4ac, the equation above 
corresponds to ellipses. 
The ellipse can also be represented by its more intuitive 
geometric parameters: 
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where (xc, yc) is the center of the ellipse, {A,B} are the 
major and minor axes, and θ is the orientation of the 
ellipse. 
The relation between (a,b,c,d,e,f) and (xc, yc, A, B, θ) is  
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We found it is convenient to find (a,b,c,d,e,f) first by the 
given data and then convert to (xc, yc, A, B, θ). 
200 data were generated with 50% clustered outliers. 
The outliers were compacted within a region of radius 5 
and center at (20.0, 5.0). The inliers had a standard 
variance 0.8, major axis 10.0, minor axis 8.0, and center 
(0.0,0.0). 

 
Fig. 3 Comparison of the results obtained by the 
proposed method, LTS and LMedS in ellipses fitting 
under 50% clustered outliers. 
 

 xc yc A B θ(deg)
True value 0.0 0.0 10.0 8.0 0.0 

The proposed 
method 0.032 -0.020 9.948 7.978 0.307 

The LTS 
method 19.786 5.162 3.328 3.035 34.129

The LMedS 
method 

 
9.560 5.208 11.757 3.679 -3.307

Table 2. Comparison of the estimated parameters by the 
proposed method, LTS, and LMedS in ellipses fitting 
under 50% clustered outliers. 
 
As illustrated in figure 3 and Table 2, LTS and the 
LMedS were seriously affected by the clustered outliers. 
However, the proposed method worked well. 
Next we use pad shown in figure 4. The edge image was 
obtained by using Canny operator with threshold 0.07. 
In total, 310 data points were in the edge image (fig. 
4(b)).  The clustered outliers, due to the flower, occupy 
50% of the data. As shown in figure 4(c), both the 
LTSD and the LTS correctly found the edge of the 
mouse pad. However, the LMedS fails to detect the 
edge of the mouse pad. This is because he statistical 
efficiency of the LTS is better than the LMedS. 
Figure 5 shows how to use the LTSD method to fit an 
ellipse to the rim of a cup. Fig. 5 (a) gives a real cup 
image. After applying the Prewitt operator, the edge of 
the cup is detected is shown in fig. 5 (b). We can see 
there is a high percentage (about 45%) of clustered 
outliers existing in the edge image, external to the rim 
of the cup (the ellipse we shall try to fit), mainly due to 
the figure on the cup. However, the rim of the cup has a 

symmetric elliptical structure. Fig. 5 (c) shows that the 
LTSD method correctly finds the ellipse in the opening 
of the cup, while both the LTS and the LMedS fail to 
correctly fit the ellipse. 
 
  
 
 
 
     
 
 

(a) 

 

      (b)                                (c) 
ig. 4 Fitting a mouse pad: (a) a mouse pad with some 
owers; (b) the edge image by using Canny operator; 
) the results obtained by the LTSD, LTS and LMedS 
ethods

 
 
 
 
 

    (b)                      (c) 
Fig. 5 Fitting the ellipse in a cup: (a) cup image; (b) 
applying Prewitt operator; (c) comparative results 
obtained y the LTSD, LTS and LMedS methods 
 

uares 
ethods to fail to fit a model under clustered outliers. 

ethod that incorporates symmetry 
distance into model fitting. This method can achieve 
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6. Conclusion 
In this paper, we demonstrated that both the least 
median of squares method and the least trimmed sq
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better performance than the least median of squares 
method and the least trimmed squares method especially 
when large percentages of clustered outliers exist in the 
data and the standard variance of inliers is large. The 
price paid for the improvement in fitting models is an 
increase of the computational complexity. 
Unfortunately, our method was especially designed for a 
symmetric model. For those models that do not have 
symmetric characteristics, or if symmetry in the data is 
lost through occlusion,  the LTSD method is not a good 
choice. However, the LTSD approach does provide a 
feasible way to greatly improve the achievements of 
conventional estimators such as the LMedS and the LTS 
methods, especially, when data (with symmetry) contain 
inliers with large variance and are contaminated by 
large percentage of clustered outliers.  
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