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Abstract 
In computer vision tasks, it frequently happens that 
gross noise occupies the absolute majority of the data. 
Most robust estimators can tolerate no more than 50% 
gross errors. In this article, we propose a highly robust 
estimator, called MDPE (Maximum Density Power 
Estimator), employing density estimation and density 
gradient estimation techniques in the residual space. 
This estimator can tolerate more than 85% outliers. 
Experiments illustrate that the MDPE has a higher 
breakdown point and less errors than other recently 
proposed similar estimators: Least Median of Squares 
(LMedS), Residual Consensus (RESC), and Adaptive 
Least kth Order Squares(ALKS). 
 
1.Introduction 
There has recently been a general recognition in 
computer vision community that algorithms should be 
robust because it is unavoidable that data are 
contaminated (due to faulty feature extraction, sensor 
noise, segmentation errors, etc). The outliers may 
include uniformly distributed, or clustered outliers or 
pseudo-outliers (arising from multiple structures). Thus 
outliers may occupy the absolute majority of the data. 
In this paper we introduce a new estimator (MDPE).  
The goals in designing MDPE were: it should be able to 
fit signals corresponding to less than 50% of the data 
points, and fit data with multi-structures. We assume the 
inliers occupy a relative majority (instead of the 
absolute majority which is assumed in general 
estimators such as the LMedS and the LTS [5]) of the 
data points. Probability Density estimation and Mean 
Shift techniques [13] are employed in MDPE. The mean 
shift vector always points towards the direction of the 
maximum increase in the probability density function. 
Through the mean shift iterations, the local maximum 
density, corresponding to the mode (or the center of the 
regions of high concentration) of data, can be found. 
Two criteria are considered in our objective function: 

• The density distribution of the data points 
provided by the density estimation technique.  

• The value of the residual corresponding to the 
local maximum of probability density. 

If the signal is correctly fitted, the densities of inliers 
should be as large as possible; at the same time, the 
value of the center of the high concentration of data 
should be as close to zero as possible in the residual 
space.  

The contributions of this paper can be summarized as 
follows :  

(1) We provide a novel estimator which can 
tolerate more than 85% outliers. 

(2) We apply nonparametric density estimation 
and density gradient estimation techniques in 
parametric estimation. Instead of considering 
residuals as the only feature, both the density 
distribution of data points and the residual 
corresponding to the local maximum density 
distribution are considered as features in our 
objective function. 

(3)  MDPE can deal with the data with multi-
structured outliers.  

This paper is organized as follows: in section 2, we 
review previous methods and their limits. The density 
gradient estimation and mean shift method are 
introduced in section 3. In section 4, we describe MDPE 
method. Experimental results are contained in section 5. 
Finally, we conclude with a discussion of further 
possible work. 
 
2. Previous methods and their limitations. 
Great efforts have been made in the search for high 
breakdown point estimators in recent decades. The 
maximum-likelihood-type estimators (M-estimators) 
[2][3] are well-known among the robust estimators. 
Although M-estimators can reduce the influence of 
outliers, they have breakdown points less than 1/(p+1), 
where p is the number of the parameters to estimate: 
robustness diminishes when the dimension p increases. 
Siegel [4] proposed the repeated median (RM) estimator 
with the breakdown point of 50%. However, the time 
complexity of the repeated median estimator is 
O(nplogpn), which  prevents the method being useful in  
applications where p  is even moderately large.  

Rousseeuw [5] proposed the least median of squares 
(LMedS) method. The LMedS finds the parameters to 
estimate by minimizing the median of residuals 
corresponding to the data points. The LMedS also has a 
breakdown point of 50% (except in extreme situations 
where it may breakdown earlier). When the outliers are 
more than 50% of the data, the LMedS method will fail 
completely to fit a model. 
The RESC [8] method can tolerate more than 50% 
outliers. RESC uses a compressed histogram method to 
infer residual consensus. However, RESC needs the 
user to tune parameters in the procedure for 
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compressing the histogram and in its objective function 
for optimal performance.  
The authors of MUSE [10] and those of ALKS [11] 
consider robust scale estimate and they both obtain a 
breakdown point higher than 50%. However, MUSE 
needs a lookup table for the scale estimator correction; 
ALKS is limited in its ability to handle extreme outliers.  
 
3. Density Gradient Estimation and Mean shift 
Method 
When a model is correctly fitted, there are two criteria 
that should be satisfied:  

(1) Data points on or near the model (inliers) 
should be as many as possible, i.e., the 
probability density function (PDF) around the 
model should be as high as possible; 

(2) The residuals of inliers should be as small as 
possible. 

Our new method, MDPE, considers these two criteria in 
its objective function and it employs density estimation 
and density gradient estimation techniques. The 
accuracy of density estimation and density gradient 
estimation will directly affect the achievements of 
MDPE in fitting models. There are several 
nonparametric methods available for probability density 
estimation: histogram, naive method, the nearest 
neighbor method, and kernel estimation [12]. The kernel 
estimation method is one of the most popular techniques 
used in estimating density. Given a set of n data points 
{Xi}I=1,…,n in a d-dimensional  Euclidian space Rd, the 
multivariate kernel density estimator with kernel K and 
window radius (band-width) h is defined as follows [12, 
p.76] 
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The kernel function K(x) should satisfy some conditions 
[18, p.95].  
There are several different kinds of kernels. The 
Epanechnikov kernel [12, p.76] is one optimum kernel 
which yields minimum mean integrated square error 
(MISE):                                  
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where cd is the volume of the unit d-dimensional sphere, 
e.g., c1=2, c2=π, c3=4π/3. 
The estimate of the density gradient can be defined as 
the gradient of the kernel density estimate (1) 
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According to (3), the density gradient estimate of the 
Epanechnikov kernel can be rewritten as: 
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where the region Sh(x) is a hypersphere of the radius h, 

having the volume d
d ch , centered at x, and containing 

nx data points. 

The mean shift vector Mh(x) is defined as:      
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Then, equation (4) can be rewritten as:   
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Equation (6) first appeared in [13]. Equations (5) shows 
that the mean shift vector is the difference between the 
local mean and the center of the window; and equations 
(6) shows that the mean shift vector is an estimate of the 
normalized density gradient.  
The Mean Shift algorithm can be simply described as 
follows: 

1. Initialize the location of the searching window 
x0 and yk= x0, (k=1). 

2. Compute yk+1= ∑
∈ )(

1

khi ySX
i

k

X
n

, k=k+1. Repeat 

until convergence. 
The converged centers (or windows) correspond to 
modes (or centers of the regions of high concentration) 
of data represented as arbitrary-dimensional vectors. 
The proof of the convergence of the mean shift 
algorithm can be found in [16][17].  
To illustrate the mean shift method, two normal 
distributions are generated, each having 1000 data 
points and with unit variance. One has a distribution 
with zero mean, and the other has a mean of 4.0 (see 
figure 1). We selected two initial points: P0 (-2.0) and 
P1 (2.5). The search window radius was chosen as 1.0. 
After applying mean shift algorithm, the mean shift 
estimator automatically found the local maximum 
densities (converged points). Precisely, P0’ located at -
0.0305, and P1’ with 4.0056. The centers (P0’ and P1’) 
of the converged windows correspond to the local 
maximum probability densities, that is, the two modes. 
 

 
Fig.1 One example where the mean shift estimator 
found the local maximum of the probability densities. 
 
4. Maximum Density Power Estimator 
4.1 The density power (DP) 
We assume the residuals of the inliers (good data 
points) satisfy a Gaussian-type distribution. If the model 
to fit is correctly estimated, the data points on or near 
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the primitive should have a higher probability density; 
at the same time, the center of the converged window by 
the mean shift procedure (corresponding to the highest 
local probability density) should be as close to zero as 
possible. According to the above assumptions, our 
objective function ψDP considers two factors: (1) the 

densities f̂ (Xi) of all data points within the converged 

window Wc and (2) the center C of the converged 

window. Thus ψDP ∑
∈

∝
Wc
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We define the probability density power function as:  
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where C is the center of the converged window Wc 

obtained by applying the mean shift procedure; βα ,   

and k are the parameters that adjust the relative 
influence of the probability density and the residual of 
the point corresponding to the center of the converged 
window. They are empirically set for the best 
achievements. For our case, they are set 1.0, 1/3 and 1.0. 

If a model is found, C  is very small, and the densities 

within the converged window are very high. Thus our 
objective function will get a highest score. Vice versa. 

Experiments, presented next, will show MDPE is a very 
powerful method for data with a large percentage of 
outliers. 
4.2 The MDPE algorithm 
The MDPE adopts a multistep procedure: 

(1) Initialize a search window radius h, and a 
repetition count m.  

(2) Randomly choose one p-subset, estimate the 
model parameters by the p-subset, and 
calculate the signed residuals of all data points. 

(3) Apply the mean shift iteration in the residual 
space with initial window center zero.  

(4) Calculate the densities corresponding to the 
positions of all data points within the 
converged window with radius h. 

(5)  Calculate the density power according 
equation (7). 

(6) Repeat step (2) to step (5) m times. Finally, 
output the parameters with maximum density 
power.  

The results are determined by one p-subset (of m p-
subsets), corresponding to the maximum density power. 
In order to improve the statistical efficiency, a weighted 
least square procedure [1, p.202] can be carried out after 
the initial MDPE fit. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  (a)           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
         (c)         (d) 
Fig. 2.  Four examples for comparing the performance of four methods: (a) fitting a step with total 87% outliers; (b) 
fitting three steps with total 91% outliers; (c) fitting a roof with total 93% outliers; (d) fitting six lines with total 94% 
outliers.  
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5. Experiments and Analysis  
In this section, we will compare the abilities of MDPE, 
RESC, ALKS, and LMedS to deal with data with a large 
percentage of outliers. The factors affecting the mean 
number of iterations in mean shift are investigated. 
Unless we specify the window radius h, it is set  at 2.0.  
 
Experiment 1. 
We generated four kinds of data (step, three-step, roof, 
and six-line), each with a total of 500 data points. The 
signals were corrupted by Gaussian noise with zero 
mean and standard variance σ. Among the 500 data 
points, α data points were randomly distributed in the 
range of (0, 100). The ith structure has γi data points.  
(a) Step: x:(0-55), y=30, γ1=65; x:(55-100), y=40, 

γ2=30; α=405; σ=1. 
(b) Three-step: x:(0-30), y=20, γ1=45; x:(30-55), y=40, 

γ2=30; x:(55-80), y=60, γ3=30; x:(80-100), y=80, 
γ4=30; α=365; σ=1. 

(c) Roof: x:(0-55), y=x+30, γ1=35; x:(55-100), y=140-
x, γ1=30; α=435; σ=1. 

(d) Six-line: x:(0-25), y=3x, γ1=30; x:(25-50), y=150-
3x, γ2=20; x:(25-50), y=3x-75, γ3=20; x:(50-75), 
y=3x-150, γ4=20; x:(50-75), y=225-3x, γ5=20; 
x:(75-100), y=300-3x, γ6=20; α=370; σ=0.1. 

From figure 2, we can see that because LMedS has only 
a 0.5 breakdown point, it cannot resist more than 50% 
outliers. Thus, LMedS failed to fit all the four signals; 
The ALKS, RESC and MDPE approaches all have a 
more than 50% breakdown point. But the results show 
that ALKS is not appropriate for the signals with a very 
large percentages of outliers because it failed in all four 
cases. In contrast, the RESC successfully fitted three 
models, but failed one. Only the MDPE correctly fitted 
all the four signals. The MDPE didn’t breakdown even 
with 94% outliers. 
 
Experiment 2. 

Fig. 3. One example of fitting circles by the four 
methods. The data had 95% outliers. 
 
The MDPE is a general method that can be easily 
extended to fit other kinds of models, such as circles, 
ellipsis, planes, etc. Figure 3 shows the ability of the 

MDPE to fit circles under 95% outliers.  Five circles 
were generated, each with 100 data points and σ=0.1. 
1500 random outliers were distributed at range (-75 - 
75). H was set 7.0. Thus, for each circle, it has 1900 
outliers (400 pseudo-outliers plus 1500 random 
outliers). This figure contained a multiple-solution type 
of data. As a result, the MDPE method gave the most 
accurate results of the four methods.   
 
Experiment 3. 
One aspect in the implementation of MDPE is the 
convergence speed of the mean shift. The convergence 
speed of the mean shift will directly affect the efficiency 
of MDPE. When the initial center of the searching 
widow is set in a region of high density value, the mean 
shift convergence is quick and the mean shift step is 
small; on the other hand, if the initial window is chosen 
near the a low density region, the convergence is poor 
and the mean shift step is large.  The mean number of 
iterations needed to guarantee to convergence is related 
to the choice of window radius: if the searching window 
radius is large, more data points will fall into the 
searching window. As a result, the mean number of 
iterations will be large. 
 
 
 
 
 
 
 
 

      (a)                            (b) 
Fig. 4 (a) the number of mean shift iterations in 1000 
residual-density spaces determined by randomly 
sampling p-subsets. (b) the relationship between the 
mean number of iteration and  the searching window 
radius h.   
 
From Figure 4 (a) we can see that the number of mean 
shift iterations in different residual-density spaces, 
which are determined by the data points and randomly 
chosen p-subsets, is different. But the mean number of 
mean shift iterations will increase with the enlargement 
of the searching window radius due to more data points 
included in the searching window, which is shown in 
figure 4 (b) (we repeated the result 20 times). 
 
Experiment 4.  
Although the MDPE has showed its powerful ability to 
tolerate large percentage of outliers (including pseudo-
outliers), its success is decided by the correct choice of 
window radius h. If h is chosen too small, it is possible 
that the densities of data points in the residual space 
may not be corrected estimated (the density function is a 
noisy function with many local peaks and valleys), and 
some inliers is possibly neglected; on the other hand, if 
h is set too large, the window will include all the data 
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points including inliers and outliers; all peaks and 
valleys of the density function will also be smoothed 
out. Figure 5 shows  that the errors in A and B increase 
with the  window radius h for the cases where 60%, 
70% and 80% percentage of uniformly distributed 
outliers were added to the signal. This is because when 
the radius becomes larger, it is possible that more 
outliers were included within the converged window. 
But the influence of different window radii on the 
results is small for different percentage of outliers when 
the h is within a certain range, for example, for this 
case, when h is set within the range at (1-15), the results 
will not be affected greatly.  At the same time, the 
percentage of outliers also has influence on the 
sensitivity of the results to the choice of window radius. 
The more percentage of outliers, the more influence of 
changing window radii on results. 
 
 
 
 
 
 
 
 
 
 
                   (a)                                           (b) 
Fig. 5.The influence of window radius and percentage 
of outliers on the results of the MDPE. 
 
 
Experiment 5. 
In this experiment, we will give two real images to 
show the ability of MDPE to tolerate large percentage 
of outliers. The window radius was set 2.0 (for line 
fitting) and 7.0 (for circle fitting).  
 
 
 
 
 
 
 
 
      (a)               (b) 
 
 
 
 
 
 
 
 
   (c) 
Fig 6. Fitting a line (a) one real pavement; (b) the edge 
image by using Canny operator;  (b) the results of line 
fitting obtained by four methods. 
 

The first example is to fit a line in the pavement shown 
in figure 6. The edge image was obtained by using 
Canny operator with threshold 0.15 and included 2213 
data points (shown in figure 6 (b)). There were about 
85% outliers (most belonging to pseudo-outliers which 
had structures and belonged to other lines) in the data. 
Four methods (MDPE, RESC, ALKS, and LMedS) 
were applied to fit a line in the pavement.  As shown in 
figure 6(c), both MDPE and RESC correctly found a 
line in the pavement. However, ALKS and LMedS 
failed to correctly fit the line.  
The second example is to fit a circle edge of one cup out 
of twelve cups. Among the total 1959 data points, the 
inliers corresponding to each cup were less than 10% of 
the total data points. This is a multiple-solution case: the 
fitted circle can correspond to any cup in the twelve 
cups. As shown in figure 7, only MDPE correctly found 
the cup edge. However, all other three methods failed to 
fit the circle edge of the cup. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
   (a)       (b) 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
             (c)  
Fig. 7 Fitting a circle edge. (a) twelve cups; (b) the edge 
image by using Canny operator; (c) the results of circle 
fitting obtained by four methods.  
 
5. Discussion 
In this paper, we provide a novel robust estimator, 
MDPE, to fit models. We randomly choose m p-subsets, 
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calculate residuals for each p-subset, apply the mean 
shift procedure to find the local maximum density, and 
output the estimated parameters determined by one p-
subset corresponding the maximum density power. 
MDPE can tolerate more than 85%, even more than 
90%, outliers.  
MDPE does not require that the outliers are uniformly 
distributed — the outliers can have structure. MDPE 
only requires that the inliers occupy the relative 
majority of the data points. MDPE can be used to fit the 
data with outliers that are uniformly distributed, have 
multiple-structure, and/or are clustered (not very dense). 
MDPE has obtained excellent achievements in 
situations with very large percentage of outliers. 
The procedure of the density estimation and the mean 
shift in MDPE is unsupervised. No user input is 
required. A crucial parameter we need to choose is the 
window radius h. Normally, the method will be stable 
for a reasonable range, when the window radius is 
changed from small to large [20, p.541]. Thus, the 
optimal window radius can be decided by the center of 
the largest operating range that yields the same 
parameters for a given data.  
When the percentage of outliers is very large or there 
are many structures in the data, one problem in carrying 
out any method which uses random sampling is: the 
number of p-subsets , m, to be sampled, is huge when 
the percentage of outliers ε is large. For example, if we 
require that the probability to have at least one “clean” 
p-subset is 0.95, and if the percentage of contaminated 
data ε is 90%, then the times (m) that p-subsets need to 
be sampled is 2994 for p=3; and 2995700 for p=6! If ε 
is more than 90%, the m will increase more quickly 
with ε and p.  Thus, a more feasible technique for 
sampling p-subsets is needed for fitting a data with a 
large number percentage of outliers and multiple 
structures.  
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