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bstract:   

his paper presents a novel range image segmentation algorithm based on a newly proposed 

obust estimator: Adaptive Scale Sample Consensus (ASSC) [28]. The proposed algorithm is a 

odel-based top-down technique and directly extracts the required primitives (models) from the 

aw images. Compared with current popular methods (region-based and edge-based methods), the 

lgorithm is very robust to noisy or occluded data due to the adoption of the novel robust 

stimator ASSC. Using a hierarchical implementation, the proposed method is computationally 

fficient. Experimental results on real range images show that the proposed algorithm is attractive 

hen compared with other state-of-the-art segmentation methods.  

. Introduction 

ange images provide three-dimensional geometric information, related to a known reference 

oordinate system, about surface points on the objects in a scene. Perception of surfaces has 

layed a very important role in image understanding, three-dimensional object recognition, robotic 

rasping, autonomous navigation, medical diagnosis, etc. Segmenting range images into 

omogeneous regions (such as the regions having the same model parameters) is the first step to 

ecognise 3D objects. Whether or not we can correctly segment the range images is an important 

actor that affects the recognition of a 3D object. There are many definitions of segmentation [1, 

]. Put simply, segmentation is to break the image into some meaningful non-overlapping 

omogeneous regions whose union is the entire image. The methods for range image 

egmentation can be roughly classified into three categories:  
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1. Region-based segmentation techniques or clustering techniques [7, 12, 3]  

2. Edge-based segmentation techniques [4, 29]. 

3. Primitive-based (also called model-based) techniques [30, 22, 16, 14, 13].  

The essence of region growing techniques is that they segment range images based upon the 

similarities of feature vectors (corresponding to pixels) in range images. The region-based 

techniques first estimate the feature vectors at each pixel, and then aggregate the pixels that have 

similar feature vectors, while at the same time, separating the pixels whose feature vectors are 

dissimilar. However, the positions of the initial seeds greatly affect the performance of most 

region-based methods. When the seeds are placed on a boundary or a noise corrupted part of the 

image, the results will break down. 

In contrast to region-based techniques, the edge-based techniques employ edge operators to 

localize surface boundaries and are computationally efficient. However, the main difficulties of 

edge-based segmentation techniques are: when range images contain noise, the effectiveness of 

the methods is greatly reduced; when the edge pixels detected by the edge operator are not 

continuous, it will be difficult to link these discontinuous pixels.  

The model-based (top-down) methods are appealing because it has been established that these 

methods have similarities to the human cognitive process [17, 5]. The model-based methods can 

directly extract the required primitives from the unprocessed raw range images. In contrast, it is 

difficult to directly extract specified primitives by the edge-based and region-based methods. In 

model-based approaches, primitive geometric features that are generally much higher level than 

the features that are used in region-based methods, are matched to the data. Then matches are 

checked for local consistency by employing some geometric constraints, e.g. distances, orientation 

of normals, etc. Because of the introduction of robust statistics into some model-based methods 

[30, 22, 16, 14], those methods are very robust to noisy or occluded data.   

Whichever segmentation method we choose, an ideal method must: 

• Be able to deal with the random measurement noises and quantization noise. 

• Be able to analyze scenes that are not limited to those containing certain type of surfaces 

such as planar or curved surfaces. 

• Not be affected by the viewing direction. 

• Be able to handle arbitrary combinations of objects in arbitrary locations and orientations 

and be able to resist the influence of occlusions. 
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Unfortunately, no existing methods have all of these capabilities. To develop a method that 

satisfies all these requirements is a long-term task for the computer vision community. 

In this paper, we develop a range image segmentation algorithm based on our recently proposed 

robust estimator – the ASSC (Adaptive Scale Sample Consensus) estimator [28]. Compared to 

traditional robust methods (such as least median squares (LMedS) [19], least trimmed squares 

(LTS) [20], and M-estimators [10], etc.), the ASSC estimator has many advantages: It can resist 

more than 80% outliers while most traditional robust methods can only resist up to 50% outliers; 

ASSC outperforms the recently proposed (similar) robust estimators: residual consensus (RSEC) 

[30], adaptive least kth squares (ALKS) [14], minimum unbiased scale estimator (MUSE) [16], 

etc., for data with multiple structures; ASSC does not need prior knowledge about the scale 

estimate of inliers;  It simultaneously yields the parameters of a model and the corresponding 

scale. 

This paper is organized as follows: in section 2, the procedure of the ASSC method is described 

and its achievements over other popular robust estimators are evaluated. In section 3, a robust 

range image segmentation algorithm is proposed and the procedure of the algorithm is illustrated. 

The experimental results of the proposed algorithm on real range images are presented and 

compared with the results of other state-of-the-art segmentation methods in section 4. Finally, we 

conclude in section 5.  

2. Robust Fitting and Scale Estimation 

An important goal of computer vision algorithms is to extract geometric information from an 

image. Parametric models play a vital role in computer vision research. It has been widely 

recognised that it is almost unavoidable that data are contaminated (due to sensor noise, faulty 

feature extraction, etc) and it is also likely that the data will include multiple structures. Thus, 

computer vision algorithms are required to be robust [6].  

During the past several decades, a number of robust estimators have appeared in the literature. 

Roughly, we can classify these robust estimators into two categories:  

1) Traditional estimators (such as LMedS [19], LTS [20], M-estimators [10], etc.). These 

estimators are characterized by the fact that their breakdown points are no more than 50%, 

i.e., when gross outliers occupy more than 50% of the whole data, these estimators will 

totally break down. 
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2) Recently proposed estimators (e.g., RANSAC [2], Hough Transform [9, 11], ALKS [14], 

RESC [30],, MUSE [16], MINPRAN [22]). These estimators have an important property: 

they can tolerate the influence of more than 50% outliers.  

The second category of estimators has received more and more attention in computer vision 

community because outliers and multiple structures (which may occupy more than 50% of the 

whole data) occur in many applications.  

Among the second category of estimators, the Hough transform and the RANSAC method were 

developed within the computer vision community (as opposed to being seen as general purpose 

statistical procedures) and widely used in vision tasks. Both techniques can achieve good results 

for data with more than 50% outliers. However, they need a user to provide a priori and estimate 

of the scale, which is not available in most practical tasks.  Moreover, the other shortcomings of 

the Hough Transform are excessive storage requirements and computational complexity in high 

dimensional parameter spaces. 

RESC, MINPRAN, MUSE, ALKS, etc. all claimed that they can tolerate more than 50% outliers. 

However, RESC needs the user to tune many parameters in compressing histogram. MINPRAN 

assumes that the outliers are randomly distributed within a certain range, which makes MINPRAN 

less effective in extracting multiple structures. MUSE and ALKS are limited in their ability to 

handle extreme outliers. 

The ASSC estimator is newly proposed robust estimator [28]. The estimator needs not priori 

knowledge about the scale of inliers. It automatically outputs the scale and the parameters of a 

model. Next, we will introduce this recently developed ASSC estimator.  

2.1 The ASSC estimator. 

We explain this method by referring to a prototypical-fitting problem: plane fitting. A plane 

equation can be written as:  

Z=AX+BY+C                                                                    (1) 
Where (A, B, C) are the parameters of a plane. Denote by {(Xi, Yi, Zi)}i=1,..n the sample points. 

The parameters of a plane can be determined by p points (p=3). For the given parameters (A, B, 

C), the residual of the point at (Xi, Yi, Zi) is:  

 ri=Zi-AXi-BYi-C                                                               (2)   

Normally, the residuals of inliers are assumed to have a Normal distribution N(0, σ).  
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1) Randomly choose a p-subset (p=2 for a line model, or 3 for planar model). 

2) Calculate the ordered absolute residuals using the parameters determined by the 

     p-subset, and calculate the bandwidth for TSSE. 

3) Apply TSSE to estimate the scale of inliers. 

4) Validate the valley. If the valley is valid, go to step 5); otherwise, go to step 1. 

5) Calculate the objective function of ASSC (i.e., assigning each p-subset candidate a   

    score). 

6) Repeat step 1) to 5) m times. Finally, output the parameters and scale corresponding to 

    the maximum score as results. 

Figure1. Robust ASSC algorithm 

 

The random sampling technique, which has been used in a lot of robust methods  (LMedS, LTS, 

RANSAC, ALKS, etc.), is employed in ASSC. There are several methods to choose p-subsets [19, 

30, 25]. Statistically, one performs m times the random selections of p-subsets, so that the 

probability P that at least one of the m p-subsets is “clean” (i.e., it does not include outliers) is 

almost 1. Let ε be the fraction of outliers contained in the whole set of points. The probability P 

can be expressed as follows ([20], pp.198): 

                                                                     P=1-(1-(1- ε)p)m                                               (3) 

Thus one can determine m for given values of ε, p and P by: 

                                 
])-1(1log[

)1log(
p

Pm
ε−

−
=                        (4) 

The ASSC estimator performs a statistical analysis of the residuals to the fit for each p-subset (see 

figure 1).  Mathematically, the ASSC estimator can be written as:  

)/(maxargˆ
ˆˆˆ θθθ

θ Sn=      (5) 

where Sθ is the scale of inliers. nθ is the number of data points near or on the model, which are 

distributed within the Sθ related threshold T ( usually, T is set as 2.5Sθ) ; And  is the estimated 

parameters of a model (by a p-subset of the data satisfying some condition: in our case, the 

maximum score of ASSC objective function: 

θ̂

ˆ /n S ˆθ θ
 ). 
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The second ingredient of ASSC is to use kernel estimators to characterise the probability 

distribution of the residuals. These kernel methods require a parameter , called the bandwidth. A 

simple overs-smoothed bandwidth selector [26] can be employed. 

h
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where           and                . K is the Epanechnikov kernel [21] and S is 

the sample standard deviation. In order to avoid over-smoothing, the bandwidth can be set as      , 

where c is a correct factor (0<c<1) ([26], p.62).  
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Another vital ingredient in our procedure it to use the Two-Step Scale Estimator (TSSE):The 

procedure of the TSSE [28] is shown in figure 2. The TSSE is used to estimate the scale in the 

corresponding parametric space for each p-subset. Because the residuals of inliers are assumed to 

have a Gaussian-like distribution (in fact, this is not an exact requirement), the validation of the 

ASSC can be checked by validating the valley:  

                                                  λ = / )                  (7) )(ˆ valleyf (ˆ peakf

where is the probability density at x, and 1>λ ≥0 When the valley is valid, λ should be small ( 

in our case, for a valid valley, λ<0.8 ). 

)(ˆ xf

 

1) Apply the mean shift method with initial center 0 to find the local peak. And apply the 

mean shift valley method [28] to find the local valley next to the peak. 

2) Estimate the scale by the median scale estimator on points within the obtained valley. 

 

 

 

 

                Figure 2. TSSE algorithm 

 

Though the performance of the ASSC estimator has been illustrated in [28] (including the 

applications of ASSC to 2D and 3D data, experimental comparisons of the achievements of 

RESC, ALKS, LMedS and ASSC, and quantitative results of the four methods for the estimation 

of the scale of inliers), in the next subsection, we will further elaborate on the performance of the 

ASSC estimator. We choose the traditional LMedS estimator and the recently proposed RESC and 

ALKS estimators for comparison. We do not choose Hough Transform and RANSAC for 
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comparison because these two estimators, unlike LMedS, RESC and ALKS, require the user to set 

parameters that effectively relate to setting/deciding the scale a priori.  

2.2. Performance evaluation of the ASSC estimator and other popular robust estimators 
 

2.2.1. The breakdown plot of the four methods 
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                        Fig. 3. Distributions of the data with (a) 20% outliers; (b) 70% outliers. 
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                        Fig. 4. Breakdown plot of the four methods 

 

First, we perform an experiment to draw the breakdown plot of each method (similar to the 

experiment reported in [30]. However, the data that we use is more complicated because it 

contains two types of outliers: clustered outliers and randomly distributed outliers). We generate 

one plane signal with Gaussian noise having unit standard variance. Both clustered outliers and 

randomly distributed outliers are added to the data. The clustered outliers have 100 data points and 
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are distributed within a cube. The randomly distributed outliers contain the plane signal and 

clustered outliers. The number of inliers is decreased from 900 to 100. At the same time, the 

number of randomly distributed outliers is increased from 0 to 750 so that the total number of the 

data points is kept 1000.  Thus, the outliers occupy from 10% to 90% outliers. Examples for data 

with 20% and 70% outliers are shown in figure 3 to illustrate the distributions of the inliers and 

outliers.  If an estimator is robust enough to outliers, it can resist the influence of both clustered 

outliers and randomly distributed outliers even when outliers occupy more than 50% of the data. 

In order to increase the stability of the result, we perform the experiments 20 times, using different 

random sampling seeds, for each data set involving different percentage of outliers (10% to 90%). 

An averaged result is show in figure 3.  

From figure 4, we can see that our method obtains the best achievement. Because the LMedS has 

only 50% breakdown point, it broke down when outliers approximately occupied more than 50% 

of the data. ALKS broke down when outliers had about 75%. RESC began to break down when 

outliers had more than 83% of the whole data; In contrast, the ASSC estimator is the most robust 

to outliers. It began to breakdown at 89% outliers. In fact, when inliers are about or less than 10% 

of the data, the assumption that inliers should occupy a relative majority of the data is violated. 

Bridging between the inliers and the clustered outliers tends to yield a higher score. Other robust 

estimators also suffer from the same problem.     

 

2.2.2. The influence of the noise level of inliers on the results of robust fitting 
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 Fig. 5. The influence of the noise level of inliers on the results of the four methods 
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Next, we will investigate the influence of the noise level of inliers on the results of the chosen four 

robust fitting methods. We use the signal shown in figure 3 (b) with 70% outliers. But we change 

the standard variance of the plane signal from 0.1 to 3, with interval 0.1.  

Figure 5 shows that LMedS broke down first. This is because that LMedS cannot resist the 

influence of outliers when the outliers occupy more than a half of the data points. ALKS, RESC, 

and ASSC estimators all can tolerate more than 50% outliers. However, among these three robust 

estimators, ALKS broke down first. It began to break down when the noise level of inliers is 

increased to 1.7. RESC is more robust than ALKS: it began to break down when the noise level of 

inliers is increased to 2.3. The ASSC estimator shows the best achievement. Even when the noise 

level is increased to 3.0, the ASSC estimator did not break down yet. 

 

2.2.3. The influence of the relative height of discontinuous signals on the results of the 
four methods 
 

Discontinuous signals (such as parallel lines/planes, step lines/planes, etc.) often appear in 

computer vision task. Work has been done to investigate the behavior of robust estimators for 

discontinuous signals [16, 23, 24].  Discontinuous signals are hard to deal with: e.g., most robust 

estimators break down and yield a “bridge” between the two planes of a “one step” signal. The 

relative height of the discontinuity is a crucial factor. In this subsection, we will investigate the 

influence of the discontinuity on the performance of the four comparative robust estimators. 

We generate two discontinuous signals: one containing two parallel planes and one containing 

“one-step” planes. The signals have unit variance. Randomly distributed outliers covering the 

regions of the signals are added to the signals. Among the total 1000 data points, there are 20% 

pseudo-outliers and 50% random outliers. The relative height is increased from 1 to 20. Figure 6 

(a) and (b) shows examples of the data distributions of the two signals with relative height 10.  

The averaged results over 20 times obtained by the four robust estimators are shown in figure 6 

(c1-c3) and (d1-d3). From figure 6, it seems that there is a virtual “adherent force” between the 

discontinuous signals. The less the relative height is, the more the “adherent force” is; vice versa. 

If an estimator is robust to discontinuous signals, the estimator can tolerate the influence of the 

“adherent force”. 
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Fig. 6. The influence of the relative height of discontinuous signals on the results of the four 

methods: (a) two parallel planes; (b) one step signal; (c1-c3) the results for the two parallel planes; 

(d1-d3) the results for the step signal. 

 

LMedS shows the worst results among the four robust estimators. It cannot tolerate the influence 

of the “adherent force”. This is because the data involve 70% outliers. The rest three estimators 

(RESC, ALKS, ASSC) can tolerate more than 50% outliers.  
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From figure 6 (c1-c3) and (d1-d3), we can see that: 

• for the parallel plane signal, the results by ALKS are affected more by the “adherent 

force”: when the relative height is small, the “adherent force” tends to affect the results of 

ALKS heavily; when the relative height is large enough (10 or more), the “adherent force” 

is small. ALKS is robust to outliers again. As comparisons, RESC and ASSC estimators 

show better robustness to the “adherent force”.  

• for the step signal, when the step height is small, the “adherent force” affects all of these 

three estimators. When the step height is increased from small to large, ASSC shows the 

robustness to the “adherent force” first.  The ASSC estimator completely tolerates the 

influence of the “adherent force” when the step height is larger than 5. RESC and ALKS 

have similar results. RESC and ALKS resist the influence of the “adherent force” only 

when the step height is 12 or more.  

In next section, we will apply the ASSC estimator to a more complicated computer vision task: 

range image segmentation.  

3. A hierarchal Algorithm for range image segmentation  
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Fig. 7. Range image segmentation algorithm 
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Range image segmentation is a complicated task because range images may contain many gross 

errors (such as sensor noise, etc.) as well as containing multiple structures. Many robust estimators 

have been employed to segment range images (such as [18, 30, 22, 16, 14, 13], etc.). For a simple 

range image, it is possible that one structure occupies the absolute majority of the whole data. 

However, in general, any single structure in a range image usually cannot occupy an absolute 

majority of the whole data. In these cases, an algorithm employing traditional robust estimators 

such as LMedS, whose breakdown point is no more than 50%, has to split the range image into 

several small patches and segment each patch, and finally, merge the results of each small patch 

according to some homogeneity criterion. Moreover, if no structure in a small patch is more than 

50% of the data in the patch, the result will break down. 

However, even if an algorithm employs a more highly robust estimators, such as RESC, ALKS, 

etc., the robust estimator cannot be directly applied to segment range images effectively. Several 

practical issues must also be considered:  

1. The computational cost. Range image usually involves a large number of data points (often 

hundreds of thousands of data points). Thus, the computational complexity of robust 

estimators must be considered. 

2. Handling of intersections of surfaces. When two surfaces intersect, points around the 

intersection line may possibly be assigned to either surface.  In fact, the intersection line is 

on the both surfaces and the data points are inliers to the both surfaces. Additional 

information (such as the normal to the surface at each pixel) should be used to handle data 

near the intersection line. 

3. Handling virtual intersection. The data points of each segmented surface should be 

connected. However, it happens that two surfaces do not actually intersect, but the 

extension of one surface is intersected by the other surface. In this case, the connected 

component algorithm [15]  should be employed.  

4. Removal of the isolated outliers. When all surfaces are estimated, some isolated outliers, 

due to the noise introduced by range image camera, may remain. At this stage, a post 

processing procedure should be made to eliminate the isolated outliers.  

 

The originators of other novel estimators (e.g. ALKS, RESC, MUSE, MINPRAN) have applied 

their estimators to range image segmentation, but they have not generally tackled all of the above 
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issues. Hence, even those interested in applying ALKS/RESC or any other estimator to range 

image segmentation may find several of the components of our complete implementation 

independently useful.  

Our range image segmentation algorithm is shown in figure 7. We employ a hierarchy structure to 

make the algorithm computationally efficient. We apply our algorithm to the real range images 

from the USF database1. The ABW range images were generated by using an ABW structured 

light scanner. Shadow pixels may occur in an ABW range image. These points cannot give range 

information and thus will not be processed. All ABW range images have 512x512 pixels. There 

are four level hierarchies in total used in our algorithm. The bottom level of the hierarchy contains 

64x64 pixels that are obtained by using regularly sampling on the original image. The top level of 

the hierarchy is the original image. The second level and the third level of the hierarchy have 

128x128 and 256x256 pixels respectively. We begin with bottom of the hierarchy, i.e., the 64x64 

regular sampled range image, and proceed back up to higher level of the hierarchy, until the top 

hierarchy, i.e., 512x512 range image.  

For unlabelled points in the top hierarchy, we use the connected component algorithm to get the 

maximum connected component. Thus, the data for current hierarchical level can be obtained by 

regularly sampling on the maximum connected component. For the connected points whose 

number is below a threshold, we marked them as noise.  

In each level of the hierarchy, we: 

(1) Apply the ASSC estimator to obtain the parameters of plane and the scale of inliers.  

(2) The inliers (in the top of the hierarchy) corresponding to the estimated parameters of plane 

and scale are then identified. If the number of inliers is less than a threshold, go to step (7). 

(3) Using normal information to validate the inliers obtained in step (2). The normal of inliers 

should be homogenous. When the angle between the normal of the data point that has been 

classified as an inlier, and the normal of the estimated plane, is less than a threshold value, 

the data point is accepted. Otherwise, the data point is rejected and will be used as some of 

the left-over points for further processing. If the number of the validated inliers is small, go 

to step (7). 

(4) Filling in the holes inside the maximum connected component from the validated inliers. 

The holes may appear because the sensor noises or some points have large residuals and 

beyond the range that the estimated scale can cover. 
                                                 
1 http://marathon.csee.usf.edu/seg-comp/SegComp.html 
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(5) Assign label to the points corresponding to the connected component from step (4) and 

remove the points from the data set that will be further processed. This happens in the top 

hierarchy.   

(6) If a point is unlabelled and it is not a jump edge point, the point will be used as a left-over 

point. After collecting all left points, using the connected component algorithm to get the 

maximum connected component. If the number of the maximum connected component is 

smaller than a threshold, go to step (7); otherwise, get the data for the current hierarchical 

level by regularly sampling on the maximum connected component obtained in step 6, 

then go to step (1). 

(7) Terminate the processing in the current level of the hierarchy and go to the higher-level 

hierarchy until the top of the hierarchy. 

 

Part of the procedures of the proposed algorithm is illustrated in figure 8. 

 

 
 
 
 
 
 
 
 
 
 
 
 
     (a)            (b)    (c) 
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     (j)            (k)    (l) 

Fig. 8. Range image segmentation by the proposed method. (a) Range image (ABW test.22 
from the USF database); (b) The marked invalidated points; (c) the detected jump edge points; 
(d) the first connected component to be processed; (e) the bottom of the hierarchy (i.e., the 
first-level hierarchy: that is a 64x64 regularly sampled image); (f) the first detected plane with 
holes using the parameters obtained by the ASSC estimator; (g) The result after filling holes; 
(h) the points left-over after removing the first plane; (i) the points with maximum connected 
component for further processing in the same level of hierarchy; (j) the final result; (k) The 
edge image of the segmented result; (l) the ground truth result. 
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4. Experiments 

 
 
 
 
 
 
 
 
 
 
 
           (a1)          (a2)            (a3) 
 
 
 
 
 
 
 
 
 
 
 
           (b1)           (b2)            (b3) 
 
 
 
 
 
 
 
 
 
 
 
 
           (c1)           (c2)            (c3) 
    
Fig. 9. Segmentation of ABW range images from the USF database. (a1, b1, c1) Range image 
with 26214 random noise points; (a2, b2, c2) The ground truth results for the corresponding range 
images without adding random noise; (a3, b3.c3) Segmentation result by the proposed algorithm. 
 

Due to the adoption of the robust ASSC estimator, the proposed range image segmentation is very 

robust to noise. In order to show the advantages of the proposed method, we added 26214 random 

noise points to the range images taken from the USF ABW range image database (test 16, test7 

and train 5). At the beginning of the segmentation, there are a high percentage of random outliers 
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(from random noise) and pseudo outliers (from multiple structures) contained in the data. No noise 

filter method is performed. We directly segment the unprocessed raw images. 

As shown in figure 9, all of the main surfaces were recovered by our method. Only a slight 

distortion appeared on some boundaries of neighboring surfaces. This is because of the sensor 

noise and the limited accuracy of the estimated normal at each range point. In fact, the more 

accurate the range data are, and the more accurate the estimated normals at range points are, the 

less the distortion is.  

We also compare our results with those of several state-of-the-art approaches [8] of the University 

of South Florida (USF), Washington State University (WSU), and the University of Edinburgh 

(UE). Figure 10 (c-f) and figure 11 (c-f) show the results obtained by the four methods. All of the 

segmented results by the four methods should be compared with the results of the ground truth 

(figure 10 (b) and figure 11 (b)). 

 

 
 
 
 
 
 
 
 
 
 
 
           (a)          (b)              (c) 
 
 
 
 
 
 
 
 
 
 
 
           (d)          (e)              (f) 
 
Fig.10. Comparison of the segmentation results for ABW range image (test 3) from the USF range 
image database. (a) Range image; (b) The result of ground truth; (c) The result by the USF;(d) The 
result by the WSU; (e) The result by the UE; (f) The result by the proposed method. 
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           (a)          (b)              (c) 
 
 
 
 
 
 
 
 
 
 
 
           (d)          (e)              (f) 
 
Fig. 11. Comparison of the segmentation results for ABW range image (test 13) from the USF 
range image database. (a) Range image; (b) The result of ground truth; (c) The result by the USF; 
(d) The result by the WSU; (e) The result by the UE; (f) The result by the proposed method. 
 

From figure 10 (c) and figure 11 (c), we can see that the USF’s results contained many noisy 

points. In both figure 10 (d) and figure 11 (d), the WSU segmenter missed one surface. The WSU 

segmenter also over segmented one surface in figure 10 (d).  Some boundaries on the junction of 

the segmented patch by the USF and WSU in figure 11 (c) were relatively seriously distorted. The 

UE shows relatively better results than those of USF and the WSU. However, some estimated 

surfaces are still noisy (see figure 10 (e) and figure 11 (e)).  Compared with the other three 

methods, the proposed method achieved the best results. All surfaces are recovered and the 

segmented surfaces are relatively “clean”. The edges of the segmented patches were reasonably 

good. 

Our method directly extracts the planar primitives from the raw range data. Adopting hierarchy-

sampling technique in the proposed method greatly reduces its time cost. The processing time of 

the method is affected to a relatively large extent by the number of surfaces in the range images. 

The processing time for a range image including simple objects is faster than that for a range 
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image including complicated objects. Generally speaking, given m=500, it takes less than one 

minute (on an AMD800MHz personal computer in C interfaced with MATLAB language) for 

segmenting a range image with simple surfaces and about 1-2 minutes for a range image including 

complicated surfaces. This includes the time for computing normal information at each range 

pixel (which takes about 12 seconds). 

5. Conclusion 

The ASSC estimator is a newly proposed promising estimator and it can tolerate more than 50% 

outliers. In this paper, we explore the properties of the ASSC estimator for 3D data and 

discontinuous signals. The results of the ASSC estimator are also compared to several popular 

robust estimators: LMedS, RESC, and ALKS. Experiments show that the ASSC estimator 

achieves better results than the other three estimators, and provides a better alternative choice in 

computer vision tasks where the estimator should be robust to data with a high percentage of 

outliers and multiple structures.  

Based on the ASSC estimator, we propose a model-based top-down algorithm for range image 

segmentation. The advantages of employing the ASSC estimator in our algorithm are that the 

ASSC estimator needs not a priori knowledge about the scale of inliers: it yields both the 

parameters of a geometric primitive, and the corresponding scale of the noise. Moreover, it has 

high robustness to outliers and multiple structures, and it provides good performance in fitting 

discontinuous signal. This makes the ASSC estimator highly efficient in the range image 

segmentation task. In [27], we have successfully applied our previously proposed QMDP 

estimator to robust optical flow calculation. In our future work, we will explore the application of 

this newly proposed ASSC estimator to the field of robust optical flow calculation.  
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