
UBoost: Boosting with the Universum

Chunhua Shen, Member, IEEE,
Peng Wang, Fumin Shen, and

Hanzi Wang, Senior Member, IEEE

Abstract—It has been shown that the Universum data, which do not belong to

either class of the classification problem of interest, may contain useful prior

domain knowledge for training a classifier [1], [2]. In this work, we design a novel

boosting algorithm that takes advantage of the available Universum data, hence

the name UBoost. UBoost is a boosting implementation of Vapnik’s alternative

capacity concept to the large margin approach. In addition to the standard

regularization term, UBoost also controls the learned model’s capacity by

maximizing the number of observed contradictions. Our experiments demonstrate

that UBoost can deliver improved classification accuracy over standard boosting

algorithms that use labeled data alone.

Index Terms—Universum, kernel methods, boosting, column generation, convex

optimization.

Ç

1 INTRODUCTION

UNIVERSUM inference means training a classifier with the help of
Universum examples—the examples that do not belong to either of
the classes of interest.

Suppose that, apart from the labeled training examples, we are
given a set of unlabeled examples, termed Universum examples,
which are collected from the same domain with the labeled
examples and we know that these unlabeled data do not belong to
either class. Now, let us assume that all possible decision functions
are categorized into a finite number of equivalence classes �1; . . . ;�l.
Functions in the same equivalence classes have the same training
error, namely, the empirical risk. Based on the maximal contradiction

on Universum principle introduced by Vapnik et al. [1], [2], here our
goal is to find an equivalence class which has a large number of
contradictions for training boosting classifiers. The contradiction

happens when two functions in the same equivalence class have
different signed outputs on a sample from the Universum.

Weston et al. [2] proposed an algorithm, termed Universum
support vector machines (USVM), which has a regularization term
for the Universum in addition to the standard SVM objective
function. Their experimental results show that USVM outperforms
those SVMs without considering Universum data, e.g., the
standard SVM algorithm. Sinz et al. [3] analyzed the behavior of
USVM and show that USVM makes the normal of the decision

plane orthogonal to the principal directions of the Universum data.

Then, they present a least squares version of the USVM algorithm,

which has a closed-form solution, and discuss the relationship

with Fisher discriminant analysis (FDA) and oriented principal

component analysis (OPCA). Zhang et al. [4] proposed a graph

based semi-supervised algorithm, which learns from the labeled

data, unlabeled data, and the Universum data simultaneously.

Besides experiments on standard benchmark data sets, there are

also some computer vision applications that utilize Universum

data, such as human pose recognition [5], [6] and gender

classification [7]. Note that as pointed out in [2], Universum

training data should contain the information about the domain of

the learning problem of interest. An example is handwritten digit

recognition (see the experiments in Section 3). In this case, the

Universum data can be handwritten symbols other than the digits

to be classified from the same data set.
Inspired by the success of USVM, in this work, we propose

an boosting algorithm, referred to as UBoost. UBoost learns a

strong classifier, with a minimal classification error on labeled

data and a maximal contradiction on the Universum data. Given

the optimization problem, we derive a meaningful Lagrange dual

formulation. Based on the derived dual problem, we are able to

iteratively solve the original optimization problem using the

column generation technique from convex optimization [8].

Therefore, compared with standard boosting algorithms such

as AdaBoost [9], the proposed UBoost has the following

compelling properties:

. Besides labeled data from two classes, UBoost exploits
Universum data as well. Improved classification accuracy
is expected over conventional boosting algorithms that do
not use Universum data.

To our knowledge, this is the first boosting imple-
mentation of Vapnik’s maximal contradiction on Uni-
versum principle.

. Inspired by the work of Shen and Li [10], we use column
generation to facilitate the optimization of the formulated
UBoost problem. So, the proposed UBoost is totally
corrective in the sense that at each iteration, the coefficients
of all the selected weak classifiers are updated. In contrast,
stagewise boosting like AdaBoost only updates the
selected weak classifier’s coefficient at current iteration,
usually leading to slower convergence.

Our experiments verify the usefulness of Universum data for

classification problems, which confirms the conclusion on

USVM [2].
Boosting algorithms have been extensively studied in the

literature [9], [10], [11], [12], [13], [14]. Boosting refers to a method

for learning an accurate classifier by linearly combining a set of

only moderately accurate weak classifiers. Similarly to SVM,

standard boosting is often trained on labeled data by minimizing a

convex surrogate of the nonconvex Bayes zero-one loss. Typically,

the exponential loss (as in AdaBoost), logistic loss (LogitBoost),

and hinge loss (LPBoost [15]) are employed. It has been shown in

[16] that stagewise boosting can be viewed as coordinate descent

optimization in the functional space. Recently, Shen and Li [10]

demonstrated that AdaBoost, LogitBoost, and boosting with

generalized hinge loss can all be seen as entropy maximization

in the dual. They explicitly established the dual problems of a class

of boosting algorithms. We follow this line of research in the sense

that we also explicitly formulate the optimization problem using

the ‘1 norm regularization and derive the Lagrange dual problem.

Based on the dual problem, we design a new boosting algorithm

using column generation. As mentioned, the main difference is

that the proposed UBoost considers the Universum data and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012 825

. C. Shen is with the Australian Center for Visual Technologies, and School
of Computer Science, University of Adelaide, North Terrace, South
Australia 5005, Australia. E-mail: chunhua.shen@adelaide.edu.au.

. P. Wang is with the School of Automation Science and Electrical
Engineering, Beihang University, Beijing 100191, China.
E-mail: wangpengnorman@gmail.com.

. F. Shen is with the School of Computer Science and Technology, Nanjing
University of Science and Technology, Nanjing 210094, China.
E-mail: fumin.shen@gmail.com.

. H. Wang is with the Cognitive Science Department, School of Information
Science and Technology and Fujian Key Laboratory of the Brain-like
Intelligent Systems, Xiamen University, Fujian, Xiamen 361005, China,
and also with the School of Computer Science, University of Adelaide, SA
5005, Australia. E-mail: hanzi.wang@ieee.org.

Manuscript received 21 Nov. 2010; revised 1 Sept. 2011; accepted 25 Oct.
2011; online 7 Dec. 2011.
Recommended for acceptance by S. Avidan.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-11-0891.
Digital Object Identifier no. 10.1109/TPAMI.2011.240.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

therefore the optimization problem does not fall into the frame-

work of [10].
The remaining content is organized as follows. In Section 2, we

discuss the proposed UBoost algorithm. In Section 3, we show

experiments of UBoost on various data sets. We demonstrate that

the Universum data indeed help improve the test accuracy in

general. We conclude this work in Section 4.
Notation. The following notation is used throughout this paper.

Suppose that we are given a set of M labeled examples fðxxxx1; y1Þ; . . . ;

ðxxxxM; yMÞg 2 IRd � f1;�1g, and a set U ¼ fxxxx01; . . . ; xxxx0Ng 2 IRd called

the Universum, which contains N unlabeled examples. H is the

entire set of possible weak classifiers, i.e., H ¼ fhkð�Þ : xxxx!
f1;�1g; k ¼ 1; . . .g. Note that the dimension of H can be infinite.

Boosting algorithms learn a strong classifier F ðxxxxÞ ¼
P

k wkhkðxxxxÞ,
where wwww � 0 is the coefficients of weak classifiers. We define the

matrix H 2 ZZM�K such that it stores the predictions of all weak

classifiers over labeled examples, i.e., Hik ¼ hkðxxxxiÞ. Likewise, the

matrix H 0 2 ZZN�K is defined such that its ðj; kÞth entry is hkðxxxx0jÞ.
We use Hi ¼ ½Hi1 Hi2 � � � Hik � � �� to denote the ith row of H, which

is the output vector of all weak classifiers on example xi.

Analogously, H 0j denotes the jth row of H 0.

2 THE UBOOST ALGORITHM

We present the main results in this section. As explained

previously, the main idea here is to exploit the unlabeled

Universum data that do not belong to either class of the training

data. The intuition is that these Universum data contain informa-

tion about the problem domain of interest and this information can

be used to train an improved boosting classifier.

2.1 Motivation

Weston et al. [2] presented the algorithm USVM, which uses the

�-insensitive loss for Universum:

1

2
kwwwwk2

2 þ C
XM
i¼1

’½yifw;bðxxxxiÞ� þD
XN
j¼1

�½fw;bðxxxx0jÞ�; ð1Þ

where ’�½t� ¼ maxf0; �� tg is the hinge loss function, and �½t� ¼
’�a½t� þ ’�a½�t� is the �-insensitive loss (see Fig. 1). fw;bðxxxxÞ ¼
wwww>�ðxxxxÞ þ b is the learned classifier. �ð�Þ is the feature mapping

function, which may only be available through its inner product.

Instead of training an SVM with the Universum, we are interested

in designing a boosting algorithm with Universum.
Collins et al. [17] showed that AdaBoost is equivalent to

minimize the exponential loss with regularization. Shen and Li

presented an ‘1-norm regularized version of the standard

AdaBoost, named AdaBoost-CG [10], which can be expressed as

min
wwww

1

M

XM
i¼1

expð�yiF ðxxxxiÞÞ þD1>wwww; s:t: wwww � 0; ð2Þ

where D controls the tradeoff between the exponential loss and the

regularization term. Of course, other regularization functions may

be used here.

Our goal is to find an optimal wwww, which maximizes margins for

labeled data and simultaneously minimizes the absolute values of

margins for Universum data. The second loss plays the role of

maximizing the observed contradictions, which helps to control

the generalization capacity of the learned machine as shown in [1].

In this work, we mainly use the ‘2 loss for the Universum data for

its simplicity. Note that we can also use other loss functions such

as the "-insensitive loss.
Similarly to AdaBoost-CG, we add an ‘2 loss for the Universum

data into the optimization problem (2), which implements UBoost:

min
wwww

1

M

XM
i¼1

expð�yiF ðxxxxiÞÞ þ
C

2N

XN
j¼1

F ðxxxx0jÞ
2 þD1>wwww;

s:t: wwww � 0:

ð3Þ

Here, F ðxxxxiÞ ¼ Hiwwww is the learned strong classifier.

Fig. 1 illustrates the loss functions that can be used in USVM

and UBoost. The hinge loss and the exponential loss can be applied

on the margins of labeled data (i.e., yiF ðxxxxiÞ, i ¼ 1; 2; . . . ;M), while

the �-insensitive loss or the ‘2 loss can be applied on the decision

values of the Universum data (i.e., F ðxxxx0jÞ, j ¼ 1; 2; . . . ; N). Intui-

tively, when the �-insensitive loss or the ‘2 loss is applied to the

Universum data, it encourages the decision values on the

Universum data to stay close to the decision hyperplane.

It is difficult to directly optimize the problem (3) because we do

not have access to all the weak classifiers in most cases. In other

words, the matrix H is unknown. Even if we do know all the weak

classifiers, usually the number of all possible weak classifiers is

extremely large, which corresponds to the variable w with

exponentially large dimensions. Next, we derive a meaningful

Lagrange dual problem of (3) and show how to use column

generation to approximately solve (3) based on the derived dual.

2.2 The Lagrange Dual of UBoost

First, we introduce two auxiliary variables zzzz 2 IRM and zzzz0 2 IRN

and rewrite (3), where zi ¼ �yiHiwwww and z0j ¼ H 0jwwww:

min
wwww

1

M

XM
i¼1

expðziÞ þ
C

2N

XN
j¼1

z0j
2 þD1>wwww;

s:t: zi ¼ �yiHiwwww; 8i; z0j ¼ H 0jwwww; 8j;wwww � 0:

ð4Þ

It is these two sets of auxiliary variables that lead to an interesting

dual problem as we show next. Note that given a primal

optimization problem, one can have many different forms of dual

problems—not all of these dual problems can lead to a column

generation-based optimization strategy.
The Lagrangian Lð�Þ associated with the problem (4) is

Lðwwww; zzzz; zzzz0|fflfflffl{zfflfflffl}
primal

; ����; uuuu; vvvv|fflfflffl{zfflfflffl}
dual

Þ ¼ 1

M

XM
i¼1

exp zi þ
C

2N

XN
j¼1

z0j
2 þD1>wwww

� ����>wwww�
XM
i¼1

uiðzi þ yiHiwwwwÞ �
XN
j¼1

vjðz0j �H 0jwwwwÞ:

ð5Þ

826 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 1. Four loss functions mentioned in this work. The hinge loss and the
exponential loss decrease monotonously with the margin and can be applied on
labeled data. The "-insensitive loss and the ‘2 loss penalize decision values with
large absolute values.

Then, the dual function is

gð����; uuuu; vvvvÞ ¼ inf
wwww;zzzz;zzzz0

Lðwwww; zzzz; zzzz0; ����; uuuu; vvvvÞ

¼ � sup
zzzz

�
uuuu>zzzz� 1

M

XM
i¼1

exp zi

�
� sup

zzzz0

�
vvvv>zzzz0 � C

2N

XN
j¼1

z0j
2

�

þ inf
wwww

�
D1> � ����> �

XM
i¼1

uiyiHi þ
XN
j¼1

vjH
0
j

�zffl}|ffl{must be 0

wwww;

¼ �
XM
i¼1

uiðlogðMuiÞ � 1Þ � C

2N

XN
j¼1

v2
j :

ð6Þ

By collecting all the constraints from the Lagrangian equation and
eliminating ����, we obtain the dual problem of (4) as follows:

max
uuuu;vvvv
�
XM
i¼1

uiðlogðMuiÞ � 1Þ � C

2N

XN
j¼1

v2
j

s:t:
XM
i¼1

uiyiHi �
XN
j¼1

vjH
0
j � D1>:

ð7Þ

Since the primal problem (4) is convex and strictly feasible, and the
Slater’s condition holds, strong duality holds between problems (4)
and (7). This guarantees that the optimal objective value of (4) is
equal to the optimal objective value of (7).

Based on the KKT optimality conditions [8], the gradient of
Lagrangian over primal and dual variables must vanish at the
optimal point. We can establish the relationship between the
optimal primal variables and the optimal dual variables:

u�i ¼
1

M
exp z�i ; v�j ¼

C

N
z0�j : ð8Þ

These equalities enable us to compute the optimal dual variables
from the primal variables.

2.3 Optimization of UBoost Using Column Generation

Since the total number of possible weak classifiers is generally very
large (even infinite), we have difficulties in directly solving
problem (4) or its dual (7). To tackle this difficulty, an optimization
technique called column generation can be applied to the dual
problem. As an iterative method, column generation adds the most
violated constraint to the restricted master problem at each
iteration. Therefore, at each iteration, we solve a relaxed version
of the original problem.

For UBoost, each constraint in the dual problem corresponds to
a selected weak classifier in the primal. In theory, any violated
constraint can be added into the master problem in the iterative
procedure of column generation. However, in practice, to speed up
the convergence of column generation, we use the following
criterion to find the most violated constraint to add into the master
problem, namely, the best weak classifier at each round:

h?ð�Þ ¼ argmax
hð�Þ

XM
i¼1

uiyihðxxxxiÞ �
XN
j¼1

vjhðxxxx0jÞ
 !

: ð9Þ

Algorithm 1 summarizes the framework of column generation
for UBoost. At each iteration, we can solve the primal problem or
the dual problem, which are equivalent. In our case, the primal
problem (3) is a smoothed convex minimization problem with
simple nonnegativeness constraints, and the dual problem is a
complicated nonlinear concave maximization problem with linear
constraints. Usually, interior point methods are used to solve
problems like (7) [8]. So, in practice, we employ L-BFGS-B [18] to
solve the primal problem (3), which is much faster than solving the
dual problem.

Algorithm 1. Column generation for UBoost.

L-BFGS-B, which is a quasi-Newton algorithm, can be used to
optimize a bound-constrained convex problem. This tool is
efficient and uses less memory to store the value and gradient of
the objective function. Since the optimal points for adjacent
iterations should not be far away, the results of the last iteration
is used as a “warm-start” initialization point for the current
iteration. In our experiments, this warm-start dramatically reduces
the computation time.

We can see that the primal variable wwww is the weak classifier
weights, while zzzz stands for the margins of labeled examples and zzzz0

stands for the “absolute margins” of unlabeled examples. Further-
more, the dual variables uuuu and vvvv are the weights for labeled and
unlabeled examples, respectively. Similarly to standard boosting
algorithms like AdaBoost, the weights measure how important they
are for selecting the best weak classifier at each iteration. Differently
from standard boosting algorithms, the weight of the Universum
data vvvv can be negative. So, in UBoost, the magnitude of vj, which
shows how much a particular Universum datum deviates from the
decision hyperplane, is the importance measure.

�-insensitive loss. Here, we discuss the case that �-insensitive
loss is used on the Universum data. The primal problem can be
written as

min
wwww;����;����

1

M

XM
i¼1

expðziÞ þ
C

2N

XN
j¼1

ð�j þ �jÞ þD1>wwww;

s:t: zi ¼ �yiHiwwww; 8i;
H 0jwwww � �þ �j;H 0jwwww � ��� �j;8j;
���� � 0; ���� � 0; wwww � 0:

ð10Þ

The dual problem is

max
uuuu;vvvv;ssss

�
XM
i¼1

uiðlogðMuiÞ � 1Þ � �1>ðvvvvþ ssssÞ

s:t:
XM
i¼1

uiyiHi þ
XN
j¼1

ðsj � vjÞH 0j � D1>:

0 � vvvv � C

2N
; 0 � ssss � C

2N
:

ð11Þ

The column generation technique can be applied as before. The
optimization procedure including the subproblem of finding the
most violated constraint is similar to the case of the square loss.
However, now the primal is not a simple convex optimization
anymore—it has a set of linear constraints. So, L-BFGS-B is not
applicable. In general, the �-insensitive loss is more expensive to
solve mainly because it is not smooth. In this case, we can use

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012 827

interior point methods-based solvers such as Mosek1 to solve the
primal problem (or the dual problem), which outputs both the
primal and dual solutions. Therefore, in our experiments, we have
used the square loss for simplicity.

3 EXPERIMENTS

We compare the proposed UBoost algorithm against a few existing

boosting algorithms on various data sets in this section.

3.1 Artificial Data

We construct two sets of two-dimensional data to show the

difference between AdaBoost and UBoost, intuitively. The first data

set contains 100 labeled data (50 positive data and 50 negative data)

and 100 Universum data. The labeled data follow the Gaussian

distribution with the mean of �	1;2 ¼ 	0:3 and the standard

deviation of 	1;2 ¼ 0:08. The unlabeled data follow the Gaussian
distribution with the mean of �1;2 ¼ 0 and the standard deviation of
	1;2 ¼ 0:1. Twenty-five weighted FDA weak classifiers are learned
by AdaBoost and UBoost, respectively.

The second data set contains 1,000 labeled data (500 positive
data, 500 negative data) and 1,000 Universum data. The
positive data follow Gaussian distribution (Nð0;0:25IÞ), and
the negative data form a circle with radius 2.0. The Universum
data form a circle with radius 1.3. Two hundred decision
stumps are learned by AdaBoost and UBoost.

From Figs. 2a and 2b, we can find that, in both cases, when the
same type and number of weak classifiers are used, the decision
boundaries of AdaBoost seems to be more complex than UBoost.
AdaBoost tends to correctly classify all the labeled examples,
resulting in an overfitting decision boundary. However, UBoost try
to make a tradeoff between the classification accuracy on labeled
data and the contradictions on the unlabeled data, which prevents
it from overfitting to outliers.

3.2 Handwritten Symbols

In this section, we compare the performances of UBoost and a
few other classifiers including AdaBoost, AdaBoost-CG [10],
LPBoost [15] on the task of handwritten symbols classification.
Three data sets are evaluated: MNIST,2 USPS,3 and ABCDETC
[2]. The advantage of using handwritten symbols data sets is that
it is easy to obtain a Universum set. For example, if we use digits
“3” and “6” as the labeled data, then all the other digits can be
used as Universum data. Fig. 3 shows some samples from these
three data sets.

Our experiments are carried out on raw pixel features as well as
pyramid histogram of gradient (PHOG) features.4 The raw pixel
features are straightforward but have relatively weaker perfor-
mance in most cases. The PHOG feature is a popular descriptor in
computer vision community and shown to achieve better
performance for digit classification [19].

First, normalization is performed on images such that the
‘2-norm of raw pixel values is 1. Second, given an input image, the
local gradients of pixels are computed by performing convolution
on the image with oriented derivative filters. For each pixel, there
are two responses in the horizontal and vertical directions, based

828 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 2. Decision boundaries learned by AdaBoost and UBoost on artificial data.

Plot (a) shows the result to classify two Gaussian distributed data, with Gaussian

distributed Universum data in the middle of positive and negative data points. Plot

(b) shows the result to classify a circle and a pie, with the Universum data forming

a circle between two classes.

Fig. 3. Samples from the data sets of MNIST, USPS, and ABCDETC.

1. http://www. mosek.com.

2. http://yann.lecun.com/exdb/mnist/.
3. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass/.
4. The codes are downloaded from the authors’ website http://

www.cs.berkeley.edu/~smaji/projects/digits/.

on which the magnitude and orientation are calculated. Third,
histograms can be constructed for cells with a pyramid of sizes and
half-size overlap. In each cell, the magnitude of all pixels are
aggregated into a set of orientation bins by linear interpolation
between bin centers to avoid aliasing. The final feature space is
concatenated by all histograms, which are weighted corresponding
to cell sizes.

There are a few options to generate gradient histograms, such
as types of filters, signed or unsigned orientation angles, and
number of orientation bins. We make the choices which are
reported as the best in [19], namely, using the oriented Gaussian
derivative (OGF) filter, signed orientation angle (0-360) and
12 orientation bins.

The number of weak classifiers for AdaBoost is cross validated
from f100; 200; 500; 1;000g. The regularization parameter of
LPBoost (the parameter D in [15, (4)]) is chosen from
f0:001; 0:005; 0:01; 0:02; 0:05; 0:1; 0:2; 0:5g using cross validation.
There are two parameters C and D in our universum boosting
UBoost. Both of these two parameter are chosen from candidates
f2�17; 2�15; 2�13; 2�11; 2�9; 2�7; 2�5g with cross validation. The pair
of parameters with the highest accuracy on validation set are
selected. The UBoost algorithm is terminated when the stopping
criterion is met or the maximum number of weak classifiers is
reached (we set the maximum number of weak classifiers to 1,000
in the experiments). All the results reported in this section are the
average of 10 independent runs. We have used these setting for all
the experiments in this work. We use decision stumps as weak
classifiers. Decision stump is a single-level decision tree on single
feature dimension, which is the simplest decision tree.

MNIST. The MNIST data set has a set of 28� 28 gray-level
images of handwritten digits (0-9). There are 60,000 examples
(about 6,000 per digit) for training and 10,000 examples (about
1,000 per digit) for testing.

We construct gradient histograms with cell sizes 14� 14,
7� 7, 4� 4 and weights 1, 2, 4, which span a 2,172-dimensional
feature space.

Like the experiments performed in [2], we use digits “5” and
“8” to form a binary classification problem. We randomly split “5”s
and “8”s in the original training set (in total 11,272 examples) into
the training subset and validation subset with various sizes (500,
1,000, 2,000, or 3,000 for training and the 1,000 for validation), and
still use “5”s and “8”s of the original test set for testing
performance. The test set size is 1,866.

Weston et al. [2] indicated that digits “3” and “6” are the most
helpful as Universum data to improve classification performance.
Therefore, we use all “3”s and “6”s in the original training set
(totally 12,049 examples) as Universum data.

The results are demonstrated in Table 1. UBoost beats
AdaBoost, AdaBoost-CG [10], and LPBoost [15] in all cases with
different features and training sizes. We have compared our
algorithm with two totally corrective boosting methods, AdaBoost-
CG and LPBoost, to justify whether the improvement is brought by

the totally corrective optimization. Actually on this data set,
AdaBoost-CG and LPBoost perform slightly worse than AdaBoost.
It confirms the usefulness of Universum data. More experiments in
the sequel affirm this observation. As an illustrative comparison,
RBF kernel USVM’s results reported in [2] are 1.60, 1.10, 0.75, 0.55
percent for training size 500, 1,000, 2,000, 3,000, respectively. So,
our UBoost with raw pixels is worse than these results but UBoost
with PHOG performs better than RBF USVM.

We run one more experiment to compare boosting with USVM.
See Table 2 for details. For this experiment, the Universum data are
generated by random averaging of the positive and negative data.
Random averaging means that we create an artificial image by
randomly selecting a pair of training data points, one for each
class, and then constructing the mean of these two data points. We
have reported the results of USVM with both linear and RBF
kernel. UBoost performs better than linear USVM but worse than
nonlinear USVM, which is expected. We again observe that UBoost
performs better than conventional boosting.

USPS. The USPS data set contains 7,291 examples for training
and 2007 for test, in which each example is a 16� 16 gray-level
image of one digit.

Likewise with MNIST, we run experiments to classify “5” and
“8” with “3” and “6” as Universum data. In this setup, there are
1,098 labeled training examples, 326 labeled test examples, and
1,322 Universum examples.

The cell sizes for gradient histograms are 8� 8, 4� 4, and 2� 2,
and the weights with respected to these sizes are 1, 2, and 4.
Finally, 2,688-dimensional features are generated.

First, we randomly sample 100, 300, or 600 examples from the
original training set for training and 400 examples are for
validation. All the 1,322 examples of digits “3” and “6” are used
as Universum data. Both raw pixel feature and PHOG feature
are evaluated individually. Table 3 shows the results for this
setup, and in most cases, our algorithm achieves better
performance over AdaBoost, AdaBoost-CG, and LPBoost. Espe-
cially on the PHOG feature, when the training set size is small,
the improvement is significant.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012 829

TABLE 1
Classification Error Rates (Standard Deviations) in Percentage on the MNIST Data

Digits 5 and 8 are used as labeled data, and digits 3 and 6 as Universum data. The validation size is 1,000.

TABLE 2
Comparison of UBoost and USVM

on the MNIST Data Set Using Raw Pixels

Samples of handwritten digits 5 and 8 are used for classification. Each sample is
represented as a 784-dimensional vector. We set the training set size as 1,000,
validation set size as 1,000 and test set size as 1,866. One thousand Universum
samples are generated via random averaging.

Second, we use the same training data size and different
Universum data sizes (100, 300, 500, 1,000, 1,322). Only the PHOG
feature is used for this setup. From Table 4, we can see that UBoost
outperforms the other three boosting algorithms in all cases. On
the other hand, the performance of UBoost improves with growing
Universum data size.

ABCDETC. The ABCDETC data set used in [2] collects 19,646
images of 78 common symbols, including digits (“0-9”), uppercase
letters (“A-Z”), lowercase letters (“a-z”), and other symbols
(“; : ! ? ; : ¼ � þ = ð Þ $ %’’ @”). Those symbols are written in
pen by 51 subjects (five examples per symbol per subject), and then
saved as 100� 100 binary images.

The original images are shrunk into 32� 32 gray-level images
by bilinear interpolation in nearest 2� 2 neighborhood (anti-
aliasing is performed). Gradient histograms are computed with cell
sizes 16� 16, 8� 8, and 4� 4 and corresponding weights 1, 2, and
4, making 2,688 feature dimensions.

In this experiment, we try to classify lower case letters “a”
and “b,” with various training/validation/test splits (20, 50, 100,
150, or 200 for training, 200 for validation, and the rest for test)
and Universum data sets (digits, uppercase letters, lowercase
letters without “a” and “b,” other symbols). Since we use all
possible examples to construct Universum data, the four
Universum data sets’ sizes are not the same: 2,544, 6,569, 5,975,
and 4,049, respectively.

Table 5 reports the results. Again we can find that, UBoost
outperforms AdaBoost and other boosting in most cases.

Experiments on these three handwritten digits recognition tasks
clearly show the effectiveness of the proposed UBoost algorithm.
We can draw the conclusion that properly designed Universum
data indeed help to improve the classification accuracy in most
cases. This finding is consistent with the results in USVM [2].

3.3 Gender Classification Using Face Images

It has been shown in [7] that Universum data help in the context of
gender classification using SVM. Here, we follow the experiment
protocol of [7] to verify if Universum data improve the
performance of UBoost for gender classification. As in [7], we
collect face images of 32 male and 20 female, 10 face images per
person.5 The experiments are conducted on the original data
without any normalization or histogram equalization. Each images
is converted to 256-level grayscale and downsampled to 45� 50
pixels to form a 2,250-dimensional vector. See [7] for details about
this data set.

We evaluate the performance of our method on this data set
with three different settings. First, we adopt the experiment setup
of [7], in which 13 subjects are randomly selected for training and
the remaining 39 subjects for testing. For each individual, three
face images are randomly selected—one for training, one for cross
validation, and the third one for testing. Therefore, the size of the

training and validation set is 13 and test size is 39. Second, for each
individual, three images are randomly selected for training,
validation, and testing. So, the sizes of the training, validation,
and testing sets are all 52. Third, two images are randomly selected
from each individual. So, the sizes of training, validation, and
testing sets are all 104. The experiment results are summarized in
Table 6. The mean and standard deviation are reported on
10 independent runs. Universum samples are generated from the
training samples by random averaging of pairs of male and female
face images, as shown in Fig. 4. Clearly, our UBoost outperforms
AdaBoost, AdaBoost-CG, and LPBoost in most cases, especially
when the training size is small. Again, we see that UBoost performs
better than the two totally corrective boosting algorithms, too. As a
comparison, the best error rate of USVM in [7] is 10:8%	 2:4%
using 13 training examples. Note that the selected face subjects in
their work can differ from ours.

3.4 Action Recognition

In this section, we test our algorithm on the KTH human action
recognition data set [20]. The KTH data set consists of 2,387 video
sequences. They can be categorized into six types of human actions,
including boxing, handclapping, jogging, running, walking, and

handwaving. These actions are performed by 25 subjects and each
action is performed multiple times by the same subject. The length
of each video is about four seconds at 25 fps, and the resolution of
each frame is 160� 120. We randomly split all the video sequences
based on the subjects into 10 pairs, each of which contains all the
sequences from 16 subjects for training and those from the
remaining nine subjects for testing. The space-time interest points
(STIP) [21] are extracted from each video sequence and used to
represent the visual content. The descriptors extracted from all the
training sequences are clustered into 4,000 clusters using k-means
algorithm. These cluster centers form the visual codebook.
Accordingly, each video sequence is characterized by a 4,000-
dimensional histogram indicating the occurrence of each visual
word in this sequence. To achieve a compact and discriminative
representation, the visual word merging algorithm, agglomerative
information bottleneck (AIB) [22], is applied to merge the histogram
bins to reduce the dimensionality. Finally, each video sequence is
represented by a {50,100, or 200}-dimensional histogram.

In this experiment, we classify the handclapping and handwaving

sequences as the positive and negative classes, respectively. Out of
about 1,500 training samples and 850 testing samples, we
randomly selected 100 samples for both training set and testing
set. The training set are then divided into training subset and
validation subset with both 50 samples. We generate about
250 Universum samples for UBoost from all the training samples
by random averaging the extracted features.

We compare different boosting algorithms on three different
dimensions (50, 100, 200), and the results of 10 independent runs
are reported in Table 7.

As we can see, UBoost is the best among the compared
boosting methods. This is consistent with the previous results on
other data sets. We also find that AdaBoost, AdaBoost-CG, and

830 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

TABLE 3
Classification Error Rates (Standard Deviations) in Percentage

on the USPS Data with Different Training Data Sizes

The validation size is 400. Digits “5” and “8” construct labeled data, and the
Universum data are made up of digits “3” and “6.”

TABLE 4
Classification Error Rates (Standard Deviations) in Percentage

on the USPS Data Set Using PHOG Features
with Different Universum Data Sizes

The training size is 500 and validation size 400. Digits “5” and “8” are the labeled
data; the Universum data are digits “3” and “6.” For AdaBoost, AdaBoost-CG, and
LPBoost, the results do not change because no Universum data are used.

5. http://cswww.essex.ac.uk/mv/allfaces/faces94.html.

LPBoost perform similarly in terms of test accuracy. In [10], it is

shown that the totally corrective AdaBoost-CG converges much

faster than AdaBoost, but there is no statistically significant

difference between AdaBoost-CG and AdaBoost. We observe the
same phenomenon.

3.5 Traffic Sign Classification

In this section, we perform traffic sign classification on the German

Traffic Sign Recognition Benchmark (GTSRB)6 data set, which has

more than 40 classes and 50,000 images in total. In our experiment,

we select three pairs of classes for classification (see examples in

Fig. 5). Since there is no label information for the online test data

set, we generate the training subset, validation subset, and test

subset from the original training data. Similarly to the action

classification task, we randomly selected 100 samples for both

training and testing. The training set is then divided into training

subset and validation subset with both 50 samples. For both

UBoost and USVM, 1,000 Universum samples are generated by

random averaging. The PHOG features of 1,568 dimension are

computed for each image. Here, we have deliberately used a small

amount of training data. When a large training set is used, all the

algorithms can achieve very high accuracy and the difference

between different methods becomes negligible.
Comparison of different boosting methods and USVM with the

linear kernel on three pairs of traffic sign sample sets is

summarized in Table 8. All the results in this section are the

average of 10 independent runs. Here, again, UBoost generally

outperforms those boosting methods that do not exploit Uni-

versum data. UBoost is also slightly better than linear USVM for

two cases out of three.

4 CONCLUSION

We have proposed a new boosting algorithm which can exploit the

unlabeled Universum data in the training procedure. We have

extended Vapnik’s principle of maximal contradiction on Universum

data to boosting learning. Experiments on a few classification

tasks—including handwritten symbol classification, gender recog-

nition, action recognition, and traffic sign classification—show

promising results over conventional boosting methods such as

AdaBoost, AdaBoost-CG, and LPBoost, which do not use Uni-

versum information. Future work will study UBoost with different

loss functions and how to effectively design and obtain Universum

data for more computer vision and machine learning problems. As

pointed out in [2], in some scenarios, poorly generated Universum

data may not help. It remains unclear how to generate or select

Universum data that always improve the classification accuracy.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012 831

TABLE 6
Classification Error Rates (Standard Deviations) in Percentage

on Gender Classification with Face Images

We can see that Universum data improve test accuracy in most cases.

TABLE 7
Classification Error Rates (Standard Deviations) in Percentage

on the KTH Data Set (Training Set Size and
Validation Set Size Are 50; Test Set Size Is 100)

We use the “handclapping” and “handwaving” actions as the positive and negative
samples, respectively, for classification. We have used 250 Universum samples
generated by random averaging.

TABLE 5
Classification Errors (Standard Deviations) in Percentage on ABCDETC Data Set

Lowercase letters “a” and “b” are used as labeled data. Four types of Universum data are evaluated, which are digits (0-9), uppercase letters (A-Z), lowercase
letters (c-z), and other symbols (; : ! ? ; : ¼ � þ = ð Þ $ %’’ @).

Fig. 4. Examples of female and male faces and the corresponding Universum
sample obtained by averaging the two images that have different class labels.

Fig. 5. Samples of traffic signs from the GTSRB data set. 6. http://benchmark.ini.rub.de/index.php?section=dataset.

ACKNOWLEDGMENTS

Peng Wang’s contribution was made while he was visiting NICTA,

Canberra Research Laboratory, Australia. Fumin Shen’s contribu-

tion was made while he was visiting the School of Computer

Science, University of Adelaide. Hanzi Wang was supported by

NSFC under project 61170179 and by the Xiamen Science and

Technology Planning project (3502Z20116005) of China.

REFERENCES

[1] V. Vapnik, Estimation of Dependences Based on Empirical Data. Springer-
Verlag, 2006.

[2] J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik, “Inference
with the Universum,” Proc. Int’l Conf. Machine Learning, pp. 1009-1016,
2006.

[3] F.H. Sinz, O. Chapelle, A. Agarwal, and B. Schölkopf, “An Analysis of
Inference with the Universum,” Advances in Neural Information Processing
Systems, pp. 1369-1376, MIT Press, 2007.

[4] D. Zhang, J. Wang, F. Wang, and C. Zhang, “Semi-Supervised Classifica-
tion with the Universum,” Proc. SIAM Int’l Conf. Data Mining, pp. 323-333,
2008.

[5] B. Peng, G. Qian, and Y. Ma, “View-Invariant Pose Recognition Using
Multilinear Analysis and the Universum,” Proc. Int’l Symp. Visual
Computing, vol. 5359, pp. 581-591, 2008.

[6] B. Peng, G. Qian, and Y. Ma, “Recognizing Body Poses Using Multilinear
Analysis and Semi-Supervised Learning,” Pattern Recognition Letters,
vol. 30, no. 14, pp. 1289-1294, 2009.

[7] X. Bai and V. Cherkassky, “Gender Classification of Human Faces Using
Inference through Contradictions,” Proc. IEEE Int’l Joint Conf. Neural
Networks, pp. 746-750, 2008.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press,
2004.

[9] R.E. Schapire and Y. Freund, “Improved Boosting Algorithms Using
Confidence-Rated Predictions,” Machine Learning, vol. 37, no. 3, pp. 297-336,
Dec. 1999.

[10] C. Shen and H. Li, “On the Dual Formulation of Boosting Algorithms,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp.
2216-2231, Dec. 2010.

[11] R. Meir and G. Rätsch, “An Introduction to Boosting and Leveraging,”
Advanced Lectures on Machine Learning, pp. 118-183, Springer-Verlag, 2003.

[12] C. Shen, P. Wang, and H. Li, “LACBoost and FisherBoost: Optimally
Building Cascade Classifiers,” Proc. European Conf. Computer Vision, vol. 2,
pp. 608-621, 2010.

[13] J.H. Friedman, “Greedy Function Approximation: A Gradient Boosting
Machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.

[14] C. Shen and H. Li, “Boosting through Optimization of Margin Distribu-
tions,” IEEE Trans. Neural Networks, vol. 21, no. 4, pp. 659-666, Apr. 2010.

[15] A. Demiriz, K. Bennett, and J. Shawe-Taylor, “Linear Programming
Boosting via Column Generation,” Machine Learning, vol. 46, no. 1-3,
pp. 225-254, 2002.

[16] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting Algorithms as
Gradient Descent,” Advances in Neural Information Processing Systems,
pp. 512-518, MIT Press, 2000.

[17] M. Collins, R.E. Schapire, and Y. Singer, “Logistic Regression, AdaBoost
and Bregman Distances,” Machine Learning, vol. 48, nos. 1-3, pp. 253-285,
2002.

[18] C. Zhu, R.H. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B,
FORTRAN Routines for Large Scale Bound Constrained Optimization,”
ACM Trans. Math. Software, vol. 23, no. 4, pp. 550-560, 1997.

[19] S. Maji and J. Malik, “Fast and Accurate Digit Classification,” Technical
Report UCB/EECS-2009-159, EECS Dept., Univ. of California, Berkeley,
Nov. 2009.

[20] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing Human Actions: A
Local SVM Approach,” Proc. Int’l Conf. Pattern Recognition, vol. 3, pp. 32-36,
2004.

[21] I. Laptev, “On Space-Time Interest Points,” Int’l J. Computer Vision, vol. 64,
nos. 2-3, pp. 107-123, Sept. 2005.

[22] N. Slonim and N. Tishby, “Agglomerative Information Bottleneck,”
Advances in Neural Information Processing Systems, vol. 12, pp. 617-623,
MIT Press, 1999.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

832 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

TABLE 8
Classification Error Rates (Standard Deviation) in Percentage

of Different Boosting Methods and Linear USVM
on Three Pairs of Traffic Sign Sets

