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a b s t r a c t

In this paper, we propose an effective feature extraction algorithm, called Multi-Subregion based
Correlation Filter Bank (MS-CFB), for robust face recognition. MS-CFB combines the benefits of global-
based and local-based feature extraction algorithms, where multiple correlation filters corresponding to
different face subregions are jointly designed to optimize the overall correlation outputs. Furthermore,
we reduce the computational complexity of MS-CFB by designing the correlation filter bank in the
spatial domain and improve its generalization capability by capitalizing on the unconstrained form
during the filter bank design process. MS-CFB not only takes the differences among face subregions into
account, but also effectively exploits the discriminative information in face subregions. Experimental
results on various public face databases demonstrate that the proposed algorithm provides a better
feature representation for classification and achieves higher recognition rates compared with several
state-of-the-art algorithms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, we have witnessed a rapid develop-
ment of the theories and algorithms of face recognition and its
successful applications in access control, video surveillance, law
enforcement, human computer interaction, and so on [1–3].
However, face recognition is still a very challenging task due to
large face appearance variations caused by occlusions, aging,
changes of illumination, facial expression, pose, etc. In particular,
in many real-world applications, it often suffers from the small
sample size (SSS) problem [2] since the training samples of each
subject are very few, which can severely affect the performance of
most face recognition algorithms especially when the dimension
of facial feature space is high.

It has been well recognized that effective feature extraction (FE)
plays an important role in the success of a face recognition algorithm
[1–4]. After the FE process, a proper low-dimensional feature vector,
with which the class separability is enhanced and the computational
complexity of subsequent classifiers is reduced, is generated. FE
algorithms can be roughly grouped into two categories [4]: global-
based and local-based. Global-based FE algorithms consider a face
region as a whole. The extracted features contain the information
embedded in the whole face [5]. On the other hand, local-based FE

algorithms are based on face subregions (i.e., local facial features, such
as eyes, nose, mouth, and chin [4,6,7]) and encode the detailed
characteristics within each face subregion.

Traditional local-based FE algorithms usually combine the out-
puts from different face subregions by adopting a fusion strategy
(e.g., the majority voting [8], the weighted sum [4,9,10], or the
concatenation of original/low-dimensional features [11–13]). Note
that the above-mentioned algorithms consider the local FE step
and the combination of different subregions as two independent
processes. Although many successful local-based FE algorithms
have been proposed, how to combine these two processes as a
whole remains an open issue.

In this paper, we propose an effective feature extraction
algorithm, called Multi-Subregion based Correlation Filter Bank
(MS-CFB), for robust face recognition. A new type of filter bank,
i.e., Correlation Filter Bank (CFB), is employed in MS-CFB. We
formulate the filter bank design as a minimization problem of the
generalized Rayleigh quotient [14], which has a closed-form
solution. The advantages of this development are the reduction
in the computational complexity and the simplification in the
decision process, since we can obtain multiple correlation filters
corresponding to different face subregions simultaneously.

Compared with traditional algorithms, the proposed MS-CFB
algorithm has the following characteristics:

� MS-CFB makes use of local facial features to perform global FE.
Therefore, MS-CFB exploits the benefits of both local face
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subregions and the whole face for extracting features, which
incorporates the advantages of both global-based and local-
based FE algorithms.

� Traditional local-based FE algorithms consider the local FE step
and the combination of different face subregions as two
independent processes. In contrast, MS-CFB tries to unify these
two processes in an integrated framework. The local FE step of
MS-CFB aims to optimize the overall correlation outputs from
all face subregions. Such strategy enhances the effectiveness of
local feature extraction.

� While conventional correlation filters [15] rely on the fre-
quency domain representations, the design process of a CFB is
based on the spatial domain representations, which effectively
reduces the computational complexity during the filter bank
design process (this is because the Fourier transforms used in
traditional algorithms are not required). Moreover, compared
with commonly used constrained correlation filters in face
recognition (such as OTF [15]), a CFB is designed by capitalizing
on the unconstrained form to improve its generalization
capability.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. A detailed description of the
proposed MS-CFB algorithm is presented in Section 3. In Section 4,
the experimental results on various public face databases are given.
Finally, the concluding remarks and future work are provided in
Section 5.

2. Related work

In this section, we begin with reviewing some widely used FE
algorithms including popular global-based and local-based FE
algorithms in Section 2.1. Some traditional and recently developed
correlation filters are described in Section 2.2. The motivation of
this work is given in Section 2.3.

2.1. Global-based and local-based FE algorithms

A large number of global-based FE algorithms have been
developed so far. One of the most successful algorithms for face
recognition is appearance-based algorithms, where a face is
represented as a vector (e.g., it can be obtained by concatenating
each row/column of a face image) [5,16,17] or a tensor [18,19].

In practice, however, a high-dimensional vector or a tensor is too
large to allow fast and robust face recognition. A common way to
solve this problem is to use dimensionality reduction algorithms,
such as Principal Component Analysis (PCA) [5], Linear Discrimi-
nant Analysis (LDA) [16,18], or Class-dependence Feature Analysis
(CFA) [20,21,52]. Each projection vector in the projection matrix
obtained by PCA (or LDA) tries to represent (or discriminate) all
classes in the new feature space. On the other hand, each
projection vector obtained by CFA, which is based on the design
of the correlation filters, discriminates one class from all the other
classes. Fig. 1 shows a comparison of the projection vectors
obtained by LDA and CFA for a three-class problem.

Global-based FE algorithms, however, do not consider the
diversity of local facial structures which can be useful for classi-
fication. Recently, local-based FE algorithms have received much
attention due to the fact that local facial features (such as eyes and
mouth) are more robust to variations of illumination, facial
expression, and pose. In [22], the Local Feature Analysis (LFA)
algorithm was introduced to encode the local topographic repre-
sentations of a face image, where kernels of local spatial support
are used to extract information from local face subregions. Kim
et al. [11] presented a component-based LDA FE algorithm for
image retrieval. Each face subregion is firstly represented as the
LDA coefficients in the Fisher subspace. Then, a feature vector is
formulated by concatenating all of the coefficients. Finally, a
holistic LDA [16], which reduces the dimension of the combined
feature vectors, is employed to obtain a compact representation. Li
et al. [13] proposed a Block-based Bag Of Words (BBOW) algorithm
for robust face recognition. Dense SIFT features [23] are calculated
and quantized into different codewords for each face subre-
gion. Then, histograms of each face subregion are concatenated
to obtain a feature vector. Finally, linear SVM classifiers are
employed to perform classification. Su et al. [4] proposed a novel
face recognition algorithm which employs both global and local
classifiers. The global feature vector is extracted from a whole face
image by using the low frequency Fourier coefficients, while the
local feature vector is constructed based on LDA. The final classifier
is formed by combining (i.e., using the linear weighted sum) a
global feature based classifier and a local feature based classifier.
Zhu et al. [8] proposed a Patch-based Collaborative Representation
based Classification (PCRC) algorithm for face recognition. The
majority voting of the classification outputs from all face sub-
regions is employed to make a final decision. Furthermore, in
order to make PCRC less sensitive to the size of face subregions,
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Fig. 1. A comparison of the projection vectors obtained by (a) LDA and (b) CFA for a three-class problem. Each projection vector obtained by LDA discriminates all three
classes while that obtained by CFA discriminates one class from the other two classes. Note that LDA obtains only two projection vectors.
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a multi-scale scheme is used by integrating the complementary
information obtained at different scales.

We should point out that, in this paper, we focus on the FE
technique, mainly referred to dimensionality reduction [19], which
aims to find a mapping from a high-dimensional image space onto
a desired low-dimensional face subspace in a global or a local
manner.

2.2. Correlation filters

Since the pioneering work by VanderLugt [24], correlation
filters have been widely used in signal processing and pattern
recognition for decades. One of the most simple correlation filters
is the Matched Filter (MF) [24,25], which uses the complex
conjugate of a reference sample. An MF is optimal only when an
input sample and the reference sample are identical except that
they are with different white noises. However, for practical
applications, an input sample suffers from different variations,
such as rotations and illumination changes, and thus an MF does
not perform well. Therefore, the composite correlation filters [20]
were developed instead of a single correlation filter. For instance,
Hester et al. [26] proposed the concept of the Synthetic Discrimi-
nant Function (SDF) filter, which is the weighted sum of MFs. An
SDF filter produces high correlation peaks for authentic samples
but it does not consider impostor samples. A Minimum Average
Correlation Energy (MACE) filter [27] was proposed to minimize
the average energy of a correlation plane for all samples while
constraining the correlation outputs for authentic samples. How-
ever, an MACE filter emphasizes high frequency parts of samples,
which makes it susceptible to noise. An Optimal Tradeoff Filter
(OTF) [28] was designed by combining a Minimum Variance
Synthetic Discriminant Function (MVSDF) filter [29] (focusing on
the low frequency parts of samples) and an MACE filter. Yan et al.
[21] proposed an Optimal Extra-class Output Tradeoff Filter
(OEOTF) to emphasize the outputs for extra-class samples.

2.3. Motivation

Recent studies [1,4] have suggested that a hybrid-based FE
algorithm, which makes use of both global-based and local-based
FE algorithms, could potentially offer the best of the two types of
algorithms. Hence, in this paper we combine global-based and
local-based FE algorithms in a principled way. Here, instead of
extracting local facial features separately and then combining
them by using the weighted sum or the majority voting, the
proposed algorithm directly extracts a global feature vector based
on the combination of local features. Meanwhile, the local FE steps
for different face subregions are jointly performed so that the
overall correlation outputs from all face subregions satisfy the
design criterion.

On the other hand, to adapt to the correlation filter which is
specifically designed for the face recognition task, instead of
optimizing the whole correlation plane, we propose to optimize
the origin peaks in the correlation plane. This improvement is
motivated by the fact that the proposed feature extraction frame-
work mainly considers the information of the origin peaks. One
merit of working on the origin peaks is that traditional Fourier
transforms are not required (based on the generalized Parseval's
theorem [30]), which improves the computational efficiency dur-
ing the filter design process.

3. Multi-subregion based correlation filter bank (MS-CFB)

In this section, an overview of the proposed MS-CFB algorithm
for face recognition is introduced in Section 3.1. The detailed

design process of a CFB and feature extraction based on CFBs are
described in Sections 3.2 and 3.3, respectively. Classification rule is
presented in Section 3.4. The complete algorithm is given in
Section 3.5. We discuss the proposed algorithm in Section 3.6.

Before formally presenting the proposed algorithm, we begin
by introducing the notations used in this paper. Light case symbols
represent the spatial domain while bold case ones refer to the
frequency domain.

3.1. Overview of the MS-CFB algorithm for face recognition

An overview of the proposed MS-CFB algorithm for face
recognition is shown in Fig. 2.

Inspired by CFA [20,21], the proposed algorithm tries to
distinguish one class from all the other classes for each projection
vector. During the training stage, for each face image in the
training set, it is firstly divided into multiple blocks of the same
size (corresponding to different face subregions). Each face sub-
region is represented as a high-dimensional vector by concatenat-
ing the pixel values in the subregion (other face feature
representations, such as SIFT [23] and Gabor [31], can also be
used). Secondly, a set of Correlation Filter Banks (CFBs) is designed
for all classes (see Section 3.2) and then used to perform feature
extraction (see Section 3.3). More specifically, a class-specific CFB
is designed for each class in the training set to discriminate that
class from all the other classes, and thus a set of class-specific CFBs
is obtained for all classes and employed to extract features. During
the test stage, for a face image in the test set, after the multi-
subregion division procedure, a feature vector is extracted based
on CFBs. Finally, a nearest neighbor classifier is employed for
classification.

3.2. Design process of a CFB

Assume that there are N training images and C classes in the
training set. We aim to design a CFB for class c (c¼ 1;2;…;C). The
design process of a CFB for class c is shown in Fig. 3.

First, we define the overall correlation output (O½n�) of a CFB as

O½n� ¼ ∑
M

m ¼ 1
ðxm � hm;cÞ½n�; ð1Þ

Designof a CFB for each class 

gc = [h1,c;h2,c;...;hM,c], c=1,2,...,C

Nearest neighbor classifier 

Test set 

Multi-subregion division 

Feature extraction based on CFBs 

Training set 

Multi-subregion division 

Fig. 2. An overview of the MS-CFB algorithm for face recognition.
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where xm is the raw feature vector of the m-th face subregion; hm;c

is a correlation filter corresponding to the m-th face subregion for
class c; M is the number of face subregions in a face image; “�”

stands for the correlation operator.
According to the Fourier transform theory [30], the above

equation can be re-written in the frequency domain:

O½n� ¼ ∑
M

m ¼ 1
∑

D�1

k ¼ 0
ðXm½k�ÞnHm;c½k�ej2πkn=P ; ð2Þ

where Xm½k� and Hm;c½k� are the Fourier transforms of xm and hm;c ,
respectively; “n” denotes the conjugate operator; n and k repre-
sent the indexes in the spatial domain and the frequency domain,
respectively; D is the dimension of the raw local facial feature
vector. Note that the point O½0�, which is equal to the sum of the
inner products between the inputs and the correlation filters, is
usually referred to the overall origin correlation output or the
overall origin peak.

In the CFB, all of the correlation filters are jointly designed so
that the outputs for authentic training samples (refer to the
training samples in class c) and the ones for impostor training
samples (refer to the training samples that are excluded from class
c) are well separated. To achieve this goal, we emphasize the
outputs for authentic training samples while at the same time,
suppressing the outputs for impostor training samples. Formally,
the design criterion of a CFB is to minimize the overall origin
output energy for impostor training samples and simultaneously
maximize the average overall origin peak for authentic training
samples for the class of interest.

According to Eq. (2), the overall origin output energy (EI) for
impostor training samples of class c can be derived as

EI ¼
1

NI
c

∑
NI

c

i ¼ 1
jOI

i;c½0�j2 ¼
1

NI
c

∑
NI

c

i ¼ 1

�
�
�
�

∑
M

m ¼ 1
∑

D�1

k ¼ 0
ðXI

mi;c½k�ÞnHm;c½k�
�
�
�
�

2

; ð3Þ

where OI
i;c½0� represents the overall origin correlation output

corresponding to the i-th impostor training sample of class c;
XI

mi;c½k� is the Fourier transform of xImi;c (see the definition below);
Nc
I is the number of impostor training samples of class c.

Based on the generalized Parseval's theorem [30] (which shows
that the correlation of two functions is equal to the product of the
individual Fourier transforms of the functions, where one of them
is complex conjugated), in Eq. (3) we can replace the representa-
tions of features in the frequency domain with those in the spatial
domain. Therefore, the right side of Eq. (3) is equivalent to the
following equation:

1

NI
c

∑
NI

c

i ¼ 1

�
�
�
�
D ∑

M

m ¼ 1
∑

D�1

n ¼ 0
xImi;c½n�hm;c½n�

�
�
�
�

2

¼D2

NI
c

∑
NI

c

i ¼ 1

�
�
�
�

∑
M

m ¼ 1
hTm;cx

I
mi;c

�
�
�
�

2

¼D2

NI
c

∑
NI

c

i ¼ 1
gTc ðXI

i;cÞðXI
i;cÞTgc ¼ gTcΣcgc; ð4Þ

where xImi;c ¼ ðxImi;c½0�; xImi;c½1�;…; xImi;c½D�1�ÞT is the raw feature
vector corresponding to the m-th face subregion of the i-th
impostor training sample of class c; hm;c ¼ ðhm;c½0�;hm;c½1�;…;

hm;c½D�1�ÞT is the corresponding correlation filter; XI
i;c ¼ ðxI1i;c;

xI2i;c;…; xIMi;cÞARMD�1 is a column vector, which contains M differ-
ent face subregions of the i-th impostor training sample;

gc ¼ ðh1;c;h2;c;…;hM;cÞARMD�1 is composed of M correlation filters
corresponding to M face subregions, and

Σc ¼
D2

NI
c

∑
NI

c

i ¼ 1
ðXI

i;cÞðXI
i;cÞT; ð5Þ

where Σc is the covariance matrix which effectively encodes the
relationships among M different face subregions.

The average overall origin peak (PA) for authentic training
samples of class c can be expressed as

PA ¼
1
Nc

∑
Nc

j ¼ 1
OA
j;c½0� ¼

D
Nc

∑
Nc

j ¼ 1
∑
M

m ¼ 1
∑

D�1

n ¼ 0
xAmj;c½n�hm;c½n�; ð6Þ

where OA
j;c½0� represents the overall origin correlation output

corresponding to the j-th authentic training sample of class c; Nc

is the number of authentic training samples of class c.

Authentic samples for class c

Multi-subregion
division

Average
Origin Peak

Origin
Output Energy

Generalized
Rayleigh Quotient

Impostor samples for class c

h1,c

h2,c

hM,c

h1,c

h2,c

hM,c

Correlation Filter Bank Design

Fig. 3. The design process of a CFB. “�” represents the inner product.
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Using the vector representation, the right side item of Eq. (6)
can be converted as

D
Nc

∑
Nc

j ¼ 1
∑
M

m ¼ 1
∑

D�1

n ¼ 0
xAmj;c½n�hm;c½n� ¼ D

Nc
∑
Nc

j ¼ 1
∑
M

m ¼ 1
hTm;cx

A
mj;c

¼ D
Nc

∑
Nc

j ¼ 1
ðXA

j;cÞTgc

¼mT
c gc; ð7Þ

where xAmj;c ¼ ðxAmj;c½0�; xAmj;c½1�;…; xAmj;c½D�1�ÞT is the raw feature

vector corresponding to the m-th face subregion of the j-th

authentic training sample of class c; XA
j;c ¼ ðxA1j;c; xA2j;c;…;

xAMj;cÞARMD�1 is a column vector, which contains M different face

subregions of the j-th authentic training sample, and

mc ¼ D
Nc

∑
Nc

j ¼ 1
XA
j;c; ð8Þ

where mc is the mean of all authentic training samples of class c.
Therefore, in order to maximize the average overall origin peak

for authentic training samples while minimizing the overall origin
output energy for impostor training samples, we employ the
quotient form by combining Eqs. (4) and (7):

JðgcÞ ¼
P2

A

EI
¼ jmT

c gcj2
gTcΣcgc

: ð9Þ

As we can see, JðgcÞ is the generalized Rayleigh quotient [14]
which reaches its maximal value when Σc is a non-singular

matrix. Unfortunately, recalling that Σc ¼ ðD2=NI
cÞ∑NI

c
i ¼ 1ðXI

i;cÞðXI
i;cÞT,

where XI
i;cARMD�1, it is easy to derive that ΣcARMD�MD is a

singular matrix since rankðΣcÞrNI
c (by using the properties of

the rank) and NI
c5MD (i.e., the SSS problem). Therefore, to resolve

the singularity problem of Σc , we add a regularized term to Eq. (9).

As a result, the optimization criterion becomes

gc ¼ arg max
gc

jmT
c gcj2

gTc Σ̂ cgc
: ð10Þ

Here Σ̂ c ¼ ð1�αÞΣcþαI, where α ðA ½0;1�Þ is the regularized
parameter and IARMD�MD is an identity matrix.

Based on some matrix operations [14], the solution of Eq. (10) is

gc ¼ Σ̂
�1
c mc: ð11Þ

Once gc is computed, all of the correlation filters hm;c

ðm¼ 1;2;…;MÞ can be obtained simultaneously for class c.
In this paper, gc is termed as the Correlation Filter Bank (CFB),

since it consists of multiple correlation filters corresponding to
different face subregions. Fig. 4 illustrates the typical correlation
outputs of a CFB for an authentic test sample and an impostor one.
As shown in Fig. 4, for an authentic test sample, the CFB can
produce a sharp peak, while the correlation output has no
discernible peak for an impostor test sample.

The time complexity to design a CFB is OðNI
cðMDÞ2þ

ðMDÞ3þMDÞ, where M and D are the number of face subregions
and the dimension of local facial feature space, respectively. Nc

I is
the number of impostor training samples of class c. The time cost
mainly comprises three parts: OðNI

cðMDÞ2Þ is used to compute Σ̂ c;
OððMDÞ3Þ is used to calculate the matrix inversion of Σ̂ c; and O
(MD) is used to construct the final gc. Therefore, the non-diagonal
matrix inversion of Σ̂ c consumes the majority time during the
design process of a CFB.

3.3. Feature extraction based on CFBs

After obtaining a set of CFBs (a CFB is designed by optimizing
Eq. (10) for one class) during the training stage, we can perform
feature extraction for both training set and test set. A face image
correlated with all CFBs generates a feature vector to represent
the image.

CFB for class c

{h1,c, h2,c, …, hM,c}

An authentic
test sample

An impostor
test sample

CFB for class c

{h1,c, h2,c, …, hM,c}

Sum of the M
correlation planes

Fig. 4. The correlation outputs of a CFB for an authentic test sample and an impostor one.
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The proposed framework of feature extraction based on CFBs is
illustrated in Fig. 5. According to Fig. 5, the sum of the correlation
outputs is first computed for each CFB. A global feature vector,
which exploits the statistics of local face subregions, is then
constructed based on the origin correlation outputs of all CFBs.
To be specific, after the multi-subregion division procedure, a raw
feature vector is first extracted for each face subregion. Next, the
correlations between the correlation filters in the CFB and the
corresponding raw feature vectors are calculated and then
summed for each face class. Finally, a global feature vector is
obtained, whose components represent the overall origin correla-
tion outputs of all CFBs in the summed correlation output plane.
In fact, the overall origin correlation output can also be derived by
cumulating the inner products between the local features and a
CFB. Mathematically, after obtaining a set of CFBs for all classes,
each component in a global feature vector f ¼ ðf ½1�; f ½2�;…; f ½C�ÞT
can be obtained by

f ½c� ¼ ∑
M

m ¼ 1
hTm;cxm ðc¼ 1;…;CÞ; ð12Þ

where fh1;c;h2;c;…;hM;cg is the CFB for class c; xm is the raw feature
vector of the m-th face subregion; C is the dimension of the global
feature vector (which is equal to the number of face classes in the
training set) and M is the number of face subregions in a
face image.

3.4. Classification rule

After the feature extraction step for both training set and test
set, we need to design a classifier for final classification. Note that
the design process of a CFB is to produce a correlation peak only
for the authentic samples for the class of interest, which means
that the maximal value criterion, i.e., the class index of the
maximal component in the feature vector, can be used as the
classification rule. Thus the label of a test sample can be given
according to

LabelðyÞ ¼ arg max
i ¼ 1;…;C

ðy½i�Þ; ð13Þ

where y¼ ðy½1�; y½2�;…; y½C�ÞT is the extracted feature vector corre-
sponding to the test face image.

On the other hand, the cosine similarity measure based nearest
neighbor classifier can also be employed for classification. The

cosine similarity measure is shown as follows:

cos ðy1; y2Þ ¼
yT1y2

‖y1‖ � ‖y2‖
; ð14Þ

where ‖ � ‖ represents the L2 norm. The cosine similarity measure
calculates the angle between two vectors and is not affected by
their magnitudes.

The cosine similarity measure based nearest neighbor classifier
is widely used in face recognition [32,33]. In [20], it has been
shown that the cosine similarity measure performs better than
both L1 norm and L2 norm distance measures in most face
recognition experiments. One reason is that [33], when an unseen
sample in the test set is projected onto the feature space, the novel
variations in the sample are inclined to evenly affect the projected
scale on each component of the features. Thus the variations make
more influence on the L1 norm and L2 norm distance measures
(since they are affected by the scale differences [34]) rather than
the angle between two vectors (i.e., the cosine similarity measure).
Therefore, the cosine similarity measure, which is invariant to
changes in scale, is more effective to perform the nearest neighbor
search in the feature space for face recognition.

As a matter of fact, compared with the maximal value criterion,
the nearest neighbor classifier based on cosine similarity measure
has two main advantages: (1) it explores the information in all
components of the feature vectors in both training and test sets,
which is beneficial for classification; (2) it can be applied to
standard face recognition test protocols (such as FERET [35] and
CAS-PEAL [36]). According to these protocols, the subjects in both
gallery and probe sets can be the unseen classes (which do not
exist in the training set). In such a case, each component in the
extracted feature vectors obtained by MS-CFB characterizes the
identity similarity between a training class and the unseen classes.
Thus, the maximal value criterion is not valid for classifying the
unseen classes, while the nearest neighbor classifier (comparing
the feature vectors in the gallery and probe sets) can be used.

3.5. The complete algorithm

In the previous subsections, we have developed all ingredients
for a robust face recognition algorithm. Now we put them together
to yield a complete Multi-Subregion based CFB (MS-CFB) algo-
rithm for face recognition (as detailed in Fig. 6).

h1,1 h2,1 hM,1

h1,C h2,C hM,C

[1]
...
[ ]

f

f C

CFB for class C
{h1,C, h2,C, …, hM,C}

Feature vector
Multi-subregion

division

CFB for class c (c=2,…,C-1)
{h1,c, h2,c, …, hM,c}

Sum of all the
outputs for class 1

Sum of all the
outputs for class C

Origin Output
Extraction

CFB for class 1
{h1,1, h2,1, …, hM,1}

Fig. 5. The proposed framework of feature extraction based on CFBs. “�” and “	” represent the correlation operator and the summation operator, respectively.
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3.6. Discussion

The advantages of the proposed MS-CFB algorithm over the
related FE algorithms are summarized as follows. Firstly, different
from traditional global-based and local-based FE algorithms, the
proposed algorithm can be viewed as a hybrid algorithm, which
uses local facial features to extract a global feature vector. Similar
to the human perception system, a hybrid algorithm could
combine the advantages of both global-based and local-based FE
algorithms, and it is more robust to variations of illumination,
facial expression, pose, and so on. Secondly, compared with the
existing local-based FE algorithms, where classifiers are indepen-
dently trained for each face subregion, a CFB is designed by jointly
optimizing multiple correlation filters corresponding to respective
face subregions at the overall origin correlation outputs. Therefore,
the differences among face subregions are taken into account and
the discriminative information in face subregions is more effec-
tively exploited in MS-CFB. Thirdly, while the local FE step and the
combination of local subregions are considered as two indepen-
dent processes in traditional local-based FE algorithms, the pro-
posed algorithm attempts to unify these two processes in one
framework, where the local FE steps for different face subregions
are integrated to produce the optimal outputs. Hence, the effec-
tiveness of local FE is enhanced.

It is worth mentioning that a CFB becomes an unconstrained
correlation filter when a whole face image without division (i.e.,
M¼1) is considered. Compared with the constrained correlation
filters, such as OTF [20,15] and OEOTF [21], the generalization
capability of the unconstrained correlation filter is greatly
improved since the hard constraints are removed during the filter
design process. In fact, a CFB with M¼1 can be viewed as an
unconstrained extension of an OEOTF which concentrates on the
origin peaks. However, the main differences between a CFB and an
OEOTF are the following: (1) a CFB is designed based on the spatial

domain while an OEOTF is represented in the frequency domain.
Therefore, traditional Fourier transforms are not required during
the design process of a CFB; (2) compared with an OEOTF that is a
single filter, a CFB consists of multiple filters corresponding to
different face subregions. A CFB is more robust in dealing with
pose variations (by dividing a whole face image into multiple
subregions) than an OEOTF.

4. Experiments

In this section, we present extensive experimental results on
various public face databases to evaluate the effectiveness of the
proposed algorithm. In Section 4.1, we introduce the competing
algorithms and experimental settings. In Section 4.2, we give the
determination of the optimal parameters in MS-CFB. In Section 4.3,
we demonstrate the robustness of the proposed MS-CFB algorithm
against illumination variations on the Multi-PIE and FRGC face
databases. In Section 4.4, we evaluate the proposed MS-CFB
algorithm against pose and facial expression variations on the
FERET and LFW face databases. In Section 4.5, the face recognition
performance obtained by the competing algorithms on the data-
bases with a single sample per person is presented. A compre-
hensive evaluation on the CAS-PEAL R1 face database is shown in
Section 4.6. The computational complexity of the proposed algo-
rithm and the performance of the competing algorithms for
automatic face recognition are given in Sections 4.7 and 4.8,
respectively. Finally, the discussion is given in Section 4.9.

4.1. The competing algorithms and experimental settings

To evaluate the performance of the proposed algorithm, we
select several popular algorithms for comparisons, including the
baseline Eigenface [5], Fisherface [16], OTF-based [20] and OEOTF-
based [21] CFA , Sparse Representation based Classification (SRC)
[3], and the state-of-the-art local-based FE algorithms including
Block-FLD [37], Cascaded LDA (C-LDA) [11], Hierarchical Ensemble
Classifier (HEC) [4], Block-based Bag-Of-Words (BBOW) [13], and
Patch-based Collaborative Representation based Classification
(PCRC) [8].

Each image in the face databases is normalized to extract a
facial region that contains only the face. Specifically, the normal-
ization for each image contains the following steps: firstly, the
centers of the eyes are manually annotated; secondly, rotation and
scaling transformations align the centers of the eyes to predefined
locations and fixed interocular distances; finally, a face image is
cropped and resized to the size of 80�88 pixels. Histogram
equalization is then applied to all face images for photometric
normalization.

The reduced dimension of the PCA subspace in CFA is set to
N�1, where N is the number of training samples. The value of
the parameter λ in SRC is set to 0.001 (which is the same as [8]).
For Block-FLD, we test three different sizes of a face subregion
(i.e., 10�10, 20�20, and 30�30) and report the best recognition
results obtained with the size of 20�20. For C-LDA, the five
components encoding scheme is used. For HEC, the size of a
candidate face subregion is set to a range from 16�16 to 64�64.
For PCRC, the size of a face subregion is set to 10�10. For other
parameters used in the competing algorithms, we use their default
parameter settings.

After feature extraction for both training set and test set, we
employ the nearest neighbor classifier for final classification. The
cosine similarity measure is used for all compared algorithms. For
the proposed MS-CFB algorithm, we evaluate the MS-CFB (max)
method (using the maximal value criterion for classification) and

Fig. 6. The complete MS-CFB algorithm for face recognition.
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the MS-CFB (cos) method (using the cosine similarity measure
based nearest neighbor classifier).

For all databases, a random subset (with t images per subject) is
taken from each database to form the training set. The rest of the
database is used as the test set. For each t, the experiments with
randomly chosen subsets are performed 20 times. We report the
average recognition rates as well as the standard deviations over
the randomly chosen test sets as the final results. The training set
and the test set for all the competing algorithms are the same for
all the experiments. In addition, the highest recognition rate for
each case is shown in bold font.

In this paper, we focus on the SSS problem, which is one of the
most challenging issues in face recognition [2,8]. This problem
arises when the number of the samples is smaller than the
dimension of the facial feature space. In many real-world applica-
tions, the number of training samples for each subject is very
limited. Therefore, the discriminability of features under such a
case is important to the final performance of a face recognition
algorithm. To evaluate the effectiveness of different feature extrac-
tion algorithms to solve the SSS problem, the value of t is set to
2–5 for all databases. In Section 4.5, we will discuss the case that
the value of t is set to 1 for the SSPP problem in particular.

4.2. Determining the optimal parameters in MS-CFB

In MS-CFB, two parameters (i.e., the size of a face subregion s
and the regularized parameter α) have an influence on the
recognition accuracy. If the size of a face subregion is too large
(e.g., it contains the whole face region), MS-CFB does not take
advantage of local-based feature extraction. On the contrary, if the
size of a face subregion is too small, MS-CFB becomes sensitive to
face alignment. Similarly, the regularized parameter should also be
carefully set. The purpose of regularization is to reduce the high
variance related to the estimation of the covariance matrix [38],
which is caused by the SSS problem.

To determine the optimal values of these two parameters (i.e., s
and α) for MS-CFB, we use the AR database [39] for evaluation. The
AR database contains over 4000 face images of 126 subjects (70
men and 56 women). The AR database characterizes the diver-
gence from ideal conditions by incorporating various facial expres-
sions (neutral, smile, and scream), illumination changes (left light
on, right light on, and both sides' light on), and occlusion modes. It
has been used as a testbed to evaluate the face recognition
algorithms. A subset that contains 120 subjects (each subject has
14 images) with only facial expression and illumination changes is
used in our experiments (see Fig. 7 for some examples).

Fig. 8 shows the recognition rates obtained by MS-CFB (with
the cosine similarity measure) over different sizes of a face
subregion (including 4�4, 8�8, 10�11, 16�11, 20�22, and
40�44) and different values of α (including 0.2, 0.4, 0.6, and
0.8) under t¼2 and t¼4 on the AR database. We can observe that
when the size of a face subregion is very small (e.g., 4�4), the
recognition rate is low. This is because a face region is divided into
too many subregions, which over-segments meaningful facial

features (such as eyes and nose) that are critical for recognition.
The recognition rates increase when the size of a face subregion
becomes larger. The recognition rate achieves the highest when
the size of a face subregion is 16�11, while the recognition rate
begins to decrease for larger subregion sizes (e.g., 20�22 and
40�44), which is caused by the sensitivity of large face subre-
gions to variations of facial expression and illumination. The value
of the regularized parameter α also affects the recognition
accuracy of MS-CFB. When α¼ 0:6, MS-CFB achieves the best
results compared with the other values of α. Therefore, we choose
the size of a face subregion to be 16�11 and the value of α to be
0.6 for MS-CFB in all the following experiments.

4.3. Robustness to illumination variations

One of the most fundamental challenges in face recognition
is significant facial appearance variations due to illumination
changes. In this section, we evaluate the performance of the
proposed algorithm against illumination variations on two popular
face databases, i.e., the Multi-PIE database [40] and the FRGC
database [41].

The Multi-PIE database contains more than 750,000 images of
337 subjects captured in four sessions with variations in pose,
facial expression, and illumination. A subset that contains 68
subjects (each subject has 22 images) with various illumination
changes is used. Specifically, we use the frontal pose images (i.e.,
the c27 subset) under 11 different illumination conditions (i.e., f01,
f03, f05, f07, f09, f11, f13, f15, f17, f19, f21) with the ambient lights
on/off. Fig. 9 shows the face images of one subject on the Multi-PIE
database. The FRGC (Face Recognition Grand Challenge) database
consists of controlled images, uncontrolled images and three-
dimensional images for each subject. We select a subset containing
6000 images of 300 subjects (20 images for each subject) from the
FRGC database. The face images in this subset are captured in both
controlled and uncontrolled conditions with severe illumination
variations. Fig. 10 shows the face images of one subject on the
FRGC database used in our experiments.

Tables 1 and 2 show the average recognition accuracies
obtained by the different algorithms on the Multi-PIE and FRGC
databases, respectively. From these tables, we can see that the
proposed MS-CFB (cos) algorithm consistently achieves better
recognition accuracies than the other competing algorithms.
Compared with MS-CFB (max), MS-CFB (cos) improves the recog-
nition rates by about 4–5%, which demonstrates the advantages of
using the cosine similarity measure as a metric. SRC obtains better
results than Block-FLD in Multi-PIE and FRGC, which shows that
SRC is more robust in dealing with illumination variations. Block-
FLD constructs multiple training patterns from a single image, but
it does not consider the relationships among different face sub-
regions. PCRC, HEC, and BBOW achieve worse performance than
MS-CFB (cos). The reason is that MS-CFB considers the local FE
step and the combination of different face subregions as a whole,
which effectively overcomes the disadvantages of the conventional
fusion strategies (e.g., the majority voting used in PCRC, the

Fig. 7. The face images of one subject on the AR database.
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Fig. 8. The recognition rates obtained by MS-CFB over different sizes of a face subregion and different values of α under (a) t¼2 and (b) t¼4 on the AR database.

Fig. 9. The face images of one subject on the Multi-PIE database.

Fig. 10. The face images of one subject on the FRGC database.

Table 1
The average recognition accuracies (mean%7std.dev.) obtained by the different
algorithms on the Multi-PIE database.

Algorithm t¼2 t¼3 t¼4 t¼5

Eigenface 72.2471.5 78.5471.7 82.1371.8 85.4171.7
Fisherface 76.7971.1 86.6371.3 88.95 71.4 92.0771.5
CFA (OTF) 83.1570.8 88.0570.8 90.1770.6 93.1070.5
CFA (OEOTF) 84.0070.6 88.1070.9 92.3270.5 93.5870.6
SRC 82.2471.2 86.5971.3 89.9871.2 93.1570.9
Block-FLD 81.1771.0 82.8471.2 88.7771.1 89.7371.0
C-LDA 83.2570.9 85.7770.8 89.9570.9 90.0770.8
HEC 85.5670.8 88.7470.6 91.4170.8 91.1170.6
BBOW 83.5870.8 87.2570.9 91.2770.9 92.6670.7
PCRC 86.1770.5 90.1570.7 92.1770.6 93.0570.5
MS-CFB (max) 82.5171.1 86.2470.9 90.0570.8 91.1770.6
MS-CFB (cos) 86.8770.6 92.0770.7 94.1770.5 96.6570.4

Table 2
The average recognition accuracies (mean%7std.dev.) obtained by the different
algorithms on the FRGC database.

Algorithm t¼2 t¼3 t¼4 t¼5

Eigenface 45.3871.3 53.1071.2 64.3571.1 70.2671.5
Fisherface 48.1771.1 55.4271.3 66.78 71.5 69.0671.7
CFA (OTF) 54.3570.8 62.1770.8 65.9970.9 73.8171.0
CFA (OEOTF) 59.8070.7 70.0570.9 78.3170.7 85.0470.6
SRC 57.7271.1 65.1471.2 72.2870.9 81.1870.9
Block-FLD 53.1470.8 62.2871.3 66.7770.9 70.2071.0
C-LDA 55.7271.1 66.1170.8 72.2471.1 76.8971.2
HEC 57.2871.3 66.2471.2 71.1771.3 75.2571.5
BBOW 58.5771.4 71.9071.2 73.1070.7 78.4370.9
PCRC 59.0271.0 70.0271.0 75.6570.6 80.1170.5
MS-CFB (max) 59.8671.2 70.6671.3 78.3171.2 85.5371.2
MS-CFB (cos) 63.9970.8 75.2470.9 82.2170.5 88.5870.6
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weighted sum of local facial features used in HEC, and the
concatenation of local features used in BBOW) employed in
local-based FE algorithms.

4.4. Robustness to pose and facial expression variations

In this section, we evaluate the influence of pose and expres-
sion variations on the performance of the proposed algorithm by
using two representative face databases, i.e., the FERET database
[35] and the LFW database [42].

The FERET database is a standard face database for evaluating
the performance of face recognition algorithms. A subset of the
FERET database, which includes 1400 images of 200 subjects (each
subject has seven images), is used. It is composed of the images
whose names are marked with two-character strings: “ba”, “bj”,
“bk”, “be”, “bf”, “bd”, and “bg” (see [35] for more details), as shown
in Fig. 11. This subset involves challenges, such as variations in
facial expression and pose. Besides, we also perform an experi-
ment on a more realistic face database captured in unconstrained
environments (i.e., the Labeled Faces in the Wild (LFW) database).
The LFW database is usually used to evaluate face recognition
algorithms in real scenarios. It contains the images of 5749
different individuals collected from the web. LFW-a [43] is a
version of LFW after face alignment. A subset with 150 subjects
(10 images for each subject) is chosen from LFW-a. This subset
involves severe variations in pose, facial expression, etc. Fig. 12
shows the sample images of one subject on the LFW database used
in our experiments.

Tables 3 and 4 show the experimental results on the FERET and
LFW databases, respectively. MS-CFB (cos) obtains comparable or
better recognition rates than the other algorithms. Particularly, the
performance of MS-CFB (cos) increases significantly when more
training samples are used. MS-CFB (cos) improves the discrimin-
ability of features by adopting the unconstrained form (which is
beneficial for learning the underlying classification boundary)
during the design process of a CFB. The recognition accuracies
obtained by CFA (OTF) and CFA (OEOTF) are lower than those
obtained by MS-CFB (cos). This is due to the fact that the usage of
the whole face region makes CFA sensitive to pose variations. In
contrast, MS-CFB (cos) alleviates this problem by using multiple
face subregions. Furthermore, BBOW obtains lower recognition
rates than HEC and PCRC on the LFW database, which indicates
that BBOW cannot effectively capture the intrinsic discriminative
information when the training set contains variations in pose and
facial expression.

Compared with the recognition results on other databases,
MS-CFB (cos) obtains lower accuracies on the LFW database. There
are two main reasons: (1) after the multi-subregion division
procedure, some face subregions contain the surrounding back-
ground (mainly caused by pose changes), which decreases the
discriminability of features extracted by our algorithm (note that
MS-CFB is based on the sum of the correlation outputs from all
face subregions); (2) the mismatching of face subregions between
training samples and test samples can occur when dealing with
large pose variations. See Fig. 13 for example. In our experiments

Fig. 11. The face images of one subject on the FERET database.

Fig. 12. The face images of one subject on the LFW database.

Table 4
The average recognition accuracies (mean%7std.dev.) obtained by the different
algorithms on the LFW database.

Algorithm t¼2 t¼3 t¼4 t¼5

Eigenface 24.1573.2 28.1073.8 32.2373.5 37.0073.7
Fisherface 27.8972.8 33.4272.7 38.4272.4 44.2572.3
CFA (OTF) 25.2773.5 30.1773.9 32.1774.0 35.2473.5
CFA (OEOTF) 30.1172.1 35.3971.8 39.9571.6 42.1371.5
SRC 30.2572.5 35.2472.3 39.9772.8 45.1372.0
Block-FLD 32.5372.3 36.7872.4 40.1271.9 45.2471.5
C-LDA 31.1072.2 35.4172.1 38.8271.5 44.9971.3
HEC 33.2472.3 41.7872.2 45.8071.5 49.7271.9
BBOW 31.2772.2 33.4171.9 41.1771.5 48.2171.5
PCRC 38.2072.0 42.1771.4 48.5871.3 50.7271.3
MS-CFB (max) 31.1072.4 35.2272.1 42.3272.0 46.0071.8
MS-CFB (cos) 37.1771.8 43.1071.5 47.1571.4 52.2071.2

Table 3
The average recognition accuracies (mean%7std.dev.) obtained by the different
algorithms on the FERET database.

Algorithm t¼2 t¼3 t¼4 t¼5

Eigenface 53.2773.0 60.1272.9 65.5072.7 70.2272.1
Fisherface 66.6371.8 67.7971.7 76.2371.6 77.5471.3
CFA (OTF) 58.9671.7 65.5371.5 74.1871.1 78.9771.4
CFA (OEOTF) 75.2771.5 79.9271.6 90.0271.3 91.5071.3
SRC 66.2172.1 67.1472.2 71.1672.5 75.3672.1
Block-FLD 67.5771.8 69.9571.7 73.2871.7 80.9571.6
C-LDA 68.8372.1 70.1772.3 75.3672.4 83.2772.3
HEC 71.7271.8 74.9271.7 80.3871.8 85.5071.9
BBOW 74.1571.6 77.4271.2 86.0071.5 92.3471.5
PCRC 75.2471.5 79.1771.2 87.9371.4 95.8571.3
MS-CFB (max) 75.1071.9 81.1471.8 90.1571.1 92.1171.4
MS-CFB (cos) 80.6071.4 84.7271.3 94.2671.2 94.9371.1
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all face images are aligned only according to the manually
annotated eye positions, as in [21,34]. When handling the frontal
face images, most face subregions between training samples and
test samples, corresponding to specific facial structures (such as
eyes, mouth), can be aligned, which makes our algorithm work
well. However, when matching face images with large pose
variations, the performance of our algorithm drops. This is because
the face alignment method employed in our work is not effective
enough so that the blocks with the same spatial layout are not
well-aligned in this case, which leads to low correlation values
between face subregions and the corresponding correlation filters.
Therefore, a more effective face alignment technique can improve
the performance of our algorithm, especially for handling images
with large pose variations.

4.5. Face recognition on databases with a single sample per person

In this section, we test the performance of the competing
algorithms on all the above-mentioned databases with a Single
training Sample Per Person (SSPP) [2,44] (which is an extreme case
of the SSS problem that severely challenges conventional face
recognition algorithms). In such a case, supervised learning tech-
niques, such as LDA [16], may not be applicable since the intra-
subject information cannot be obtained from one training sample.
One possible solution is to use a generic training set. For instance,
Su et al. [45] proposed an Adaptive Generic Learning (AGL)
algorithm, which is specially designed for solving the SSPP problem
by using a generic training set. Kan et al. [46] developed an
Adaptive Discriminant Analysis (ADA) algorithm, where the
within-class scatter matrix of each single sample is inferred by
using only a limited number of the nearest neighbors in the generic
training set. Recently, the image partitioning based algorithms
become popular for solving the SSPP problem. Lu et al. [47]
proposed a novel Discriminative Multi-Manifold Analysis (DMMA)
algorithm by learning discriminative features from image patches.
Therefore, AGL, ADA and DMMA are employed as the competing

algorithms in our experiments. Whenwe evaluate the performance
of AGL (or ADA) on one database, all the other databases are used
to constitute the generic training set in AGL (or ADA). For the other
algorithms, we only use a single sample per person for training.
Note that since Fisherface [16] (based on LDA) cannot deal with the
SSPP problem, its performance is not reported in this section.

Table 5 shows the average recognition accuracies obtained by
the competing algorithms in dealing with the SSPP problem.
Among the competing algorithms, MS-CFB (cos) obtains compar-
able results on most databases. Specifically, MS-CFB (cos) outper-
forms most of the compared local-based algorithms, such as
Block-FLD, BBOW, and PCRC. Furthermore, it obtains comparable
performance with recently proposed DMMA algorithm which
considers the local face subregions of each subject as a manifold.
The reason why our algorithm is comparable to these state-of-the-
art algorithms even if only raw data of local face subregions is used
is that our algorithm extracts global features by effectively
combining local features in an integrated framework, while others
extract local features independently. Furthermore, compared with
the AGL and ADA algorithms, which additionally use a generic
training set, MS-CFB (cos) still achieves better performance, which
clearly demonstrates the desirable classification ability of the
proposed algorithm. It is also interesting to observe that MS-CFB
(cos), DMMA, and PCRC obtain better recognition results than AGL
and ADA in most databases.

Note that the results obtained by some competing algorithms
(such as DMMA [47], PCRC [8], AGL [45], and ADA [46]) in our
experiments are different from the reported results. This is
because the experimental settings in our paper and the original
papers are different. For instance, in the original papers [47,8],
DMMA used the standard FERET evaluation protocol, while PCRC
used more than two images per person for training. In contrast, for
DMMA and PCRC, we only use a single sample per person for
training in our paper. In addition, in the original papers [45,46],
AGL (or ADA) used a generic training set that is similar to the test
set. However, when we evaluate the performance of AGL (or ADA)
on one database in this paper, all the other databases are used to
constitute the generic training set (which is significantly different
from the test set) for AGL (or ADA). Hence, the accuracies of AGL
and ADA are lower than those reported in the original papers. How
to choose a proper and representative generic training set still
needs further investigation for AGL and ADA.

4.6. Face recognition on CAS-PEAL R1 with unseen subjects

To evaluate the generalization capability of the proposed
algorithm, we use the CAS-PEAL R1 face database for evaluation.
The CAS-PEAL R1 database contains three types of datasets, i.e.,
the training set, gallery set and probe set. The training set contains
300 subjects and each subject has four images. The gallery set

Fig. 13. Multi-block division of the same subject with different poses based on our
face alignment (an image is divided into 5�8 blocks and the size of each block is
16�11 pixels). (a) and (b) are both frontal face images while (c) is a face image
with a large pose variation. Note that the blocks marked with green in (a) and
(b) are aligned, while the marked blocks in (c) are not well-aligned with the ones in
(a) and (b). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Table 5
The average recognition accuracies (mean%7std.dev.) obtained by the different algorithms for the SSPP problem.

Algorithm AR Multi-PIE FRGC FERET LFW

Eigenface 35.7773.5 50.1573.5 22.4274.1 33.7073.8 11.1373.8
CFA (OTF) 38.5473.4 55.5472.5 40.1773.8 31.0073.5 13.2172.8
CFA (OEOTF) 53.2772.9 58.1072.1 43.5073.1 55.2773.0 16.1772.6
SRC 45.2773.2 57.8971.8 38.2873.3 43.8273.3 15.2672.7
Block-FLD 48.8172.4 56.1771.4 45.1773.0 50.4772.8 18.7872.5
AGL 55.4173.4 60.9571.7 50.2072.8 55.1471.3 15.1173.2
ADA 60.1873.0 60.1671.9 51.7672.7 60.11762 19.3273.0
DMMA 67.2472.0 62.5571.6 53.1572.7 65.2472.5 22.1772.8
BBOW 64.2172.5 55.9871.8 46.3172.7 60.5273.0 17.3773.2
PCRC 65.4072.3 61.1171.6 48.9473.2 64.2572.2 22.1472.8
MS-CFB (max) 61.2172.9 57.7272.5 45.3072.4 61.7872.1 16.6672.2
MS-CFB (cos) 66.1372.2 62.8171.5 52.7472.8 66.6072.1 21.1572.9
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includes 1040 images of 1040 subjects (each subject has one image
captured under a normal condition). The CAS-PEAL R1 database
contains six probe sets under six different conditions: accessory,
age, background, distance, expression, and lighting. All images that
appear in the training set are excluded from the probe sets and the
probe subjects may not exist in the training set. We employ the
evaluation protocol introduced in [36]. Here only the training set is
used to train all of the algorithms. The details of the CAS-PEAL R1
database are described in Table 6. Fig. 14 shows the face images of
two subjects on the CAS-PEAL R1 training set. Among the
competing algorithms, SRC and PCRC are infeasible to deal with
the case that the probe subjects are the unseen subjects in the
probe sets, because a test image is represented as a linear
combination of the training samples for these two algorithms. In
addition, MS-CFB (max) is not evaluated, since it is not valid for
classifying unseen subjects.

The recognition rates obtained by the different algorithms on
the CAS-PEAL R1 database are given in Table 7. It can be seen that
MS-CFB (cos) achieves the recognition rates with at least 6% higher
(on an average) than the other competing algorithms. Fisherface
obtains the worst recognition rates (which are much lower than
the recognition rates obtained by Eigenface). The generalization
capability of Fisherface is poor because the number of training
samples for each class is small. BBOW obtains much worse
performance than HEC and C-LDA. The reason is that the code-
words learned in the training set are not representative (note that
some subjects in the probe sets are different from those in the
training set). MS-CFB (cos) achieves the highest recognition rates
on the “Accessory”, “Age”, and “Expression” probe sets. In particular,
for the most difficult “Lighting” probe set, MS-CFB (cos) signifi-
cantly improves the recognition accuracy (it achieves the recogni-
tion rate of 70.45%), while Fisherface only obtains the recognition
rate of 4.95%. In short, these experimental results on the CAS-PEAL
R1 database show that the CFBs learned on the training set can
classify unseen subjects well in the proposed MS-CFB.

4.7. Computational complexity of the proposed algorithm

We compare the computational time of the proposed MS-CFB
algorithm with that of some representative feature extraction
algorithms, including Eigenface, Fisherface, CFA (with OTF and
OEOTF), and PCRC. All the computational time is reported on a
workstation with 2 Intel Xeon E5620 (2.40 GHz) CPUs (only one
core is used) on the MATLAB platform. Table 8 shows the

computational time spent on the training and test (recognition)
stages by these algorithms on the CAS-PEAL R1 database.

As shown in Table 8, the computational time of the proposed
MS-CFB used for training is higher than that of the other
algorithms. However, the computational time of MS-CFB used for
recognition is comparable to that of the other algorithms (and the
proposed MS-CFB achieves more accurate recognition rates when
it is compared with these competing algorithms on the CAS-PEAL
R1 database). As the training stage is usually performed offline, the
computational complexity of the proposed algorithm will not
constrain its applications to real-world tasks.

4.8. Automatic face recognition

In the above experiments, the facial part in each image is
cropped and resized into the size of 80�88 based on manually
annotated eye positions. However, in many real-world applica-
tions, a robust face recognition system should be a fully automatic
system (it is not realistic to manually annotate the centers of eyes
for each test face image). Hence, in this section, we evaluate the
performance of all the competing algorithms in the applications of
automatic face recognition. To be specific, we manually align and
crop each face image in the training set and automatically detect,
crop, and resize each image in the test set by using a popular face
detector [48] and an automatic eye detector [49]. A subset
(includes 1400 images of 200 individuals) of the FERET database
is used for comparisons. The experimental settings used are the
same as those in Section 4.4. Here, the number of training samples
for each subject t is set to 3. Fig. 15 shows the average recognition
accuracies when manual annotation and automatic detection are
respectively applied.

From Fig. 15, we can observe that the accuracy of automatically
detected positions of the centers of eyes affects the face recogni-
tion performance of all the competing algorithms. This is due to
the fact that there usually contain some spatial misalignments
caused by location errors in the automatically detected face
images, which leads to a negative influence on the recognition
accuracy. Experimental results have verified the degradation of the
recognition performance (about a 3–6% drop) by automatic detec-
tion of the centers of eyes. However, the local-based algorithms
(such as Block-FLD, BBOW, PCRC, and the proposed MS-CFB) are
more robust against spatial misalignments than the global-based
algorithms (such as Eigenface, CFA, and SRC). This is because the
local-based algorithms can alleviate the misalignment effects by
partitioning a face image into smaller face subregions. In parti-
cular, experimental results have shown that the proposed MS-CFB
gives the smallest drop on the recognition accuracy, since it
effectively combines local features in an integrated framework.

4.9. Discussion

From the above-mentioned experimental results, we can see
that the proposed MS-CFB with the cosine similarity measure can
achieve better recognition accuracies than most competing algo-
rithms to handle the SSS problem. There are two reasons why MS-
CFB achieves superior performance: (1) MS-CFB partitions each
face image into multi-subregions and an effective learning

Table 6
The datasets used in the CAS-PEAL R1 evaluation protocol.

Datasets Training set Gallery set Probe set (frontal)

Accessory Age Background Distance Expression Lighting

No. of images 1200 1040 2285 66 553 275 1570 2243

Fig. 14. The face images of two subjects on the CAS-PEAL R1 training set.
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algorithm (i.e., CFB) is applied to explore discriminative local
features which are more robust to variations caused by facial
expression, illumination, and pose; (2) MS-CFB extracts discrimi-
native features in a class-specific manner, while the others extract
features in a generic way.

It is worth remarking upon the performance comparisons
among different algorithms:

(1) Eigenface, which is based on PCA, extracts the most
representative features in terms of the minimal mean squared
error. However, PCA is not optimal for the classification problem,
which results in less effectiveness of Eigenface in face recognition.
On the contrary, MS-CFB emphasizes the correlation outputs for
authentic samples while suppressing the outputs for impostor
samples. Therefore, MS-CFB can extract discriminative features
which effectively distinguish different classes.

(2) The projection vector obtained by Fisherface discriminates
all classes. One problem of Fisherface is that it is not able to
effectively discriminate two classes close to each other since large
class distances are often overemphasized (which is also known as
the class separation problem [50]). In contrast, the projection
vector of MS-CFB focuses on the separation between one specific

class and all the other classes. As a result, MS-CFB can alleviate the
class separation problem.

(3) Compared with CFA, where the correlation filter is designed
in the frequency domain, the CFB used in MS-CFB only employs
the feature representation in the spatial domain which improves
the computational efficiency by removing the traditional Fourier
transforms during the design process of a CFB. Furthermore,
different from the commonly used OTF and OEOTF (which are
the constrained correlation filters), the design of a CFB removes
the hard constraints by using the unconstrained form so as to
increase the generalization capability of the filter bank.

(4) While most FE algorithms are required to select the optimal
reduced dimension (ORD) [51], MS-CFB does not need to deter-
mine the ORD, thus improving the convenience. This is because
the dimension of the feature vector obtained by MS-CFB is a fixed
value (which is equal to the number of classes in a training set).
Moreover, compared with popular local-based FE algorithms (such
as HEC and PCRC), where the local FE step and the combination of
local subregions are performed as two independent processes, MS-
CFB unifies these two processes in an effective framework.

5. Conclusions and future work

In this paper, we have presented an effective feature extraction
algorithm called MS-CFB and applied it to the task of face recogni-
tion. MS-CFB unifies the local feature extraction step and the
combination of different face subregions in an integrated framework.
The key idea of MS-CFB is that, instead of extracting local features
independently for each face subregion, the local feature extraction
steps for different face subregions are combined to give optimal
overall correlation outputs. We have evaluated MS-CFB under
different conditions, including variations in illumination, facial
expression, and pose, as well as dealing with the SSPP problem.
Experimental results have shown that MS-CFB outperforms most
state-of-the-art feature extraction algorithms, such as SRC, HEC, and
PCRC, on popular face databases for solving the SSS problem.

As mentioned in our experiments, the multi-block division
strategy (based on rectangle blocks) used in the proposed algo-
rithm cannot handle face recognition with large pose variations
well due to the fact that all face images are manually aligned
according to the eye positions. Recent work has demonstrated that
the usage of irregular subregions can be helpful to improve face
recognition performance. For instance, Kumar et al. [6] defined 10
subregions with different shapes (e.g., rectangles, eclipses, poly-
gons) corresponding to functional parts of a face (such as the nose,
mouth, eye) in recognition. Hence, how to design adaptive face
subregions to improve the performance of MS-CFB under large
pose variations is an interesting direction of our future work.
In addition, we are interested in extending the idea of MS-CFB to
the task of facial expression recognition and other biometric
recognition applications.

Table 7
The recognition rates (%) obtained by the different algorithms on the CAS-PEAL R1 database.

Algorithm Accessory Age Background Distance Expression Lighting Average

Eigenface 59.39 57.58 95.84 93.09 73.69 10.16 51.00
Fisherface 45.95 33.33 87.70 77.45 61.34 4.95 40.67
CFA (OTF) 53.52 56.06 94.58 92.00 67.83 15.78 49.41
CFA (OEOTF) 73.39 66.67 98.19 98.18 83.31 30.14 64.62
B-FLD 65.43 63.64 90.60 93.82 75.92 23.09 57.29
C-LDA 69.80 69.70 94.03 94.91 76.05 24.92 59.71
HEC 70.68 71.21 94.21 96.36 82.04 35.62 64.86
BBOW 60.18 57.58 92.59 94.55 71.21 20.33 53.76
MS-CFB (cos) 75.49 75.76 97.29 97.82 88.28 42.71 70.45

Table 8
Comparisons of the computational time (in seconds) used by the competing
algorithms on the CAS-PEAL R1 database.

Algorithm Training time Recognition time

Eigenface 51.41 70.61
Fisherface 83.79 20.62
CFA (OTF) 522.74 32.88
CFA (OEOTF) 202.78 30.41
PCRC 65.27 23.80
MS-CFB 3134.21 82.64
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Fig. 15. The average recognition accuracies (mean%7std.dev.) when manual
annotation and automatic detection are applied. Methods 1–12 correspond to
Eigenface, Fisherface, CFA(OTF), CFA (OEOTF), SRC, Block-FLD, C-LDA, HEC, BBOW,
PCRC, MS-CFB (max), MS-CFB (cos), respectively.
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